666 resultados para 113-697B
Resumo:
A biostratigraphically continuous, but intensely bioturbated, Cretaceous/Tertiary boundary sequence was cored during Ocean Drilling Program (ODP) Leg 113 on Maud Rise (65°S) in the Weddell Sea off East Antarctica. This interval is the first recovered by ODP/DSDP in the South Atlantic sector of the Southern Ocean and offers a unique opportunity to study the nannofossil sequences leading up to and beyond the terminal Cretaceous event at a high southern latitude. The K/T boundary lies just within Chron 29R and is placed at ODP Sample 113-690C-15X-4, 41.5 cm. An iridium anomaly was independently noted at about this level as well. Upper Maestrichtian-lower Paleocene sediments consist mostly of light-colored nannofossil chalks. Dark brown sediments at the base of the Danian (Zone CPla) are characterized by an increased clay content attributed to a drop in calcareous microplankton productivity following the terminal Cretaceous event. Although delineation of the boundary is hampered by intense bioturbation, the sharp color contrast between overlying clay-rich, dark brown chalks of the Tertiary and light cream colored chalks of the Cretaceous aids in the selection of the K/T horizon. Several dark colored burrows sampled at intervals as far as 1.3 m below the boundary and within the light colored Cretaceous chalk were found to contain up to 17% Tertiary nannofossils. Calcareous nannofossils from the boundary interval were divided into three groups for quantitative study. The three groups, "Cretaceous," "Tertiary," and "Survivor," exhibit a sequential change across the boundary with the Cretaceous forms giving way to a Survivor-dominated assemblage beginning at the boundary followed shortly thereafter by the appearance of the Tertiary taxa, Cruciplacolithus and Hornibrookina. The species, H. edwardsii, comprises nearly 50% of the assemblage just above the Zone CPla/CPlb boundary, an abundance not reported elsewhere at this level. Calculation of individual species abundances reveals several additional differences between this K/T boundary interval and those studied from middle and low latitude sections. The percentage of Thoracosphaera is much lower at the boundary in this section and a small form, Prediscosphaera stoveri, is extremely abundant in Cretaceous sediments just below the boundary.
Resumo:
Oligocene to Quaternary sediments were recovered from the Antarctic continental margin in the eastern Weddell Sea during ODP Leg 113 and Polarstern expedition ANT-VI. Clay mineral composition and grain size distribution patterns are useful for distinguishing sediments that have been transported by ocean currents from those that were ice-rafted. This, in turn, has assisted in providing insights about the changing late Paleogene to Neogene sedimentary environment as the cryosphere developed in Antarctica. During the middle Oligocene, increasing glacial conditions on the continent are indicated by the presence of glauconite sands, that are interpreted to have formed on the shelf and then transported down the continental slope by advancing glaciers or as a result of sea-level lowering. The dominance of illite and a relatively high content of chlorite suggest predominantly physical weathering conditions on the continent. The high content of biogenic opal from the late Miocene to the late Pliocene resulted from increased upwelling processes at the continental margin due to increased wind strength related to global cooling. Partial melting of the ice-sheet occurred during an early Pliocene climate optimum as is shown by an increasing supply of predominantly current-derived sediment with a low mean grain size and peak values of smectite. Primary productivity decreased at ~ 3 Ma due to the development of a permanent sea-ice cover close to the continent. Late Pleistocene sediments are characterized by planktonic foraminifers and biogenic opal, concentrated in distinct horizons reflecting climatic cycles. Isotopic analysis of AT. pachyderma produced a stratigraphy which resulted in a calculated sedimentation rate of 1 cm/k.y. during the Pleistocene. Primary productivity was highest during the last three interglacial maxima and decreased during glacial episodes as a result of increasing sea-ice coverage.
Resumo:
The first well logs collected below the Antarctic circle were obtained during Leg 113 at Site 693 on the Dronning Maud Land Margin (Antarctica) in the Weddell Sea. Gamma-ray, resistivity, and sonic logs were collected between 108.0 and 439.0 mbsf. The downhole logs show good agreement with the data collected from cores and provide a continuous measurement of the sedimentary record. These continuous log records show that the rather uniform Tertiary lithology seen in cores is characterized by high-frequency variability in the log data. Several thin hard streaks are identified, the largest of which coincides with a major Miocene hiatus. Associated with this hiatus is a change to lower illite content (and correspondingly lower gamma-ray counts) and to a significant increase in diatom content. Spectral analysis of the logs was performed on the lower Pliocene through upper Oligocene interval (108.0-343.0 mbsf). Between 108.0 and 245.0 mbsf, average sedimentation rates (50 and 26 m/m.y.) are high enough to show that variance is present in the orbital eccentricity (~95 k.y.) and obliquity (~41 k.y.) bands. Between 253.0 and 343.0 mbsf, the sedimentation rate (8 m/m.y.) is too low to resolve high frequency variations. The Milankovitch frequencies are best developed in the resistivity logs. Resistivity is responding to changes in porosity, which in these sediments is controlled by the abundance of biosiliceous sediments, particularly diatoms. The orbital forcing suggested by the Milankovitch frequencies may be influencing diatom productivity by inducing oscillations in upwelling, ice coverage, pack ice, and/or polynya. Although variations in diatom abundance were observed in the cores, they were not attributed to a Milankovitch signal, and therefore in this environment, downhole logs are an important contribution to the detection and understanding of orbitally influenced changes in sedimentation.
Resumo:
An almost continuous Upper Cretaceous through Pleistocene biogenic sediment section was recovered from two sites on Maud Rise, a volcanic edifice in the Weddell Sea, off eastern Antarctica. Calcium carbonate values were determined for 1100 closely spaced samples using a Coulometrics CO2 Coulometer. Following a very brief decrease in the percentage of calcium carbonate immediately above the Cretaceous/Tertiary boundary, values remain high (~70%-80%), throughout most of the Paleocene, with variations primarily attributed to changes in the relative abundance of terrigenous and biogenic components. A small general decrease in calcium carbonate is observed from the upper Paleocene to lower middle Eocene. Eocene values continue to show small to moderate fluctuations. These fluctuations become more pronounced in the Oligocene as biosiliceous and carbonate sediments are mixed and interlayered. A distinct decrease in the calcium carbonate component is observed in the upper Oligocene through lower middle Miocene. Calcium carbonate becomes dominant again in the middle and lower upper Miocene, followed by almost exclusive biosiliceous sedimentation until the Pleistocene, where foraminifer-dominated calcareous ooze was recovered. Interpretation of this data will be carried out when a more finalized chronostratigraphy for the sequence has been produced.
Resumo:
To detect and track the impact of large-scale environmental changes in a the transition zone between the northern North Atlantic and the central Arctic Ocean, and to determine experimentally the factors controlling deep-sea biodiversity, the Alfred- Wegener-Institute for Polar and Marine Research (AWI) established the deep-sea long-term observatory HAUSGARTEN, which constitutes the first, and until now only open-ocean long-term station in a polar region. Virtually undisturbed sediment samples have been taken using a video-guided multiple corer (MUC) at 13 HAUSGARTEN stations along a bathymetric (1,000 - 4,000 m water depth) and a latitudinal transect in 2,500 m water depth as well as two stations at 230 and 1,200 m water depth within the framework of the KONGHAU project. Various biogenic sediment compounds were analyzed to estimate the input of organic matter from phytodetritus sedimentation, benthic activities (e.g. bacterial exoenzymatic activity), and the total biomass of the smallest sediment-inhabiting organisms (size range: bacteria to meiofauna).