658 resultados para water exchange


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The compositional record of the AND-2A drillcore is examined using petrological, sedimentological, volcanological and geochemical analysis of clasts, sediments and pore waters. Preliminary investigations of basement clasts (granitoids and metasediments) indicate both local and distal sources corresponding to variable ice-volume and ice-flow directions. Low abundance of sedimentary clasts (e.g., arkose, litharenite) suggests reduced contributions from sedimentary covers while intraclasts (e.g., diamictite, conglomerate) attest to intrabasinal reworking. Volcanic material includes pyroclasts (e.g., pumice, scoria), sediments and lava. Primary and reworked tephra layers occur within the Early Miocene interval (1093 to 640 metres below sea floor mbsf). The compositions of volcanic clasts reveal a diversity of alkaline types derived from the McMurdo Volcanic Group. Finer-grained sediments (e.g., sandstone, siltstone) show increases in biogenic silica and volcanic glass from 230 to 780 mbsf and higher proportions of terrigenous material c. 350 to 750 mbsf and below 970 mbsf. Basement clast assemblages suggest a dominant provenance from the Skelton Glacier - Darwin Glacier area and from the Ferrar Glacier - Koettlitz Glacier area. Provenance of sand grains is consistent with clast sources. Thirteen Geochemical Units are established based on compositional trends derived from continuous XRF scanning. High values of Fe and Ti indicate terrigenous and volcanic sources, whereas high Ca values signify either biogenic or diagenic sources. Highly alkaline and saline pore waters were produced by chemical exchange with glass at moderately elevated temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pore-water samples were recovered at five sites from ODP Leg 114 in the subantarctic South Atlantic Ocean and analyzed for pH, alkalinity, chloride, sulfate, fluoride, silica, magnesium, calcium, strontium, potassium, lithium, and barium. At sites in the East Georgia Basin and on the Islas Orcadas Rise, Ca increases and Mg decreases linearly downhole with a DeltaMg/DeltaCa ratio reflecting conservative diffusive exchange and basalt basement reactions. At sites on the west flank of the Mid-Atlantic Ridge and on the Meteor Rise, Ca gradients are nonlinear, and nonconservative DeltaMg/DeltaCa ratios reflect alteration reactions of abundant silicic volcanic ash in the sediment. K decreases linearly downhole at all sites, reflecting uptake by basement and the absence of significant sediment-hosted reactions. SO4 decreases and alkalinity increases downhole are due to a slight sulfate reduction at all sites except at Site 701. Sr increases downhole at all sites except Site 701, with DeltaSr/DeltaCa ratios reflecting diffusive exchange with basement. At Site 704 on the Meteor Rise, there is intense Sr production during carbonate recrystallization in the upper 200 mbsf. Below 200 mbsf at Site 704, the ion concentration product of SrSO4 is constant, suggesting Sr control by celestite solubility. Li and F concentrations display complex behavior related to sedimentary reactions, probably calcite recrystallization (Li uptake and F release).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ignoring small-scale heterogeneities in Arctic land cover may bias estimates of water, heat and carbon fluxes in large-scale climate and ecosystem models. We investigated subpixel-scale heterogeneity in CHRIS/PROBA and Landsat-7 ETM+ satellite imagery over ice-wedge polygonal tundra in the Lena Delta of Siberia, and the associated implications for evapotranspiration (ET) estimation. Field measurements were combined with aerial and satellite data to link fine-scale (0.3 m resolution) with coarse-scale (upto 30 m resolution) land cover data. A large portion of the total wet tundra (80%) and water body area (30%) appeared in the form of patches less than 0.1 ha in size, which could not be resolved with satellite data. Wet tundra and small water bodies represented about half of the total ET in summer. Their contribution was reduced to 20% in fall, during which ET rates from dry tundra were highest instead. Inclusion of subpixel-scale water bodies increased the total water surface area of the Lena Delta from 13% to 20%. The actual land/water proportions within each composite satellite pixel was best captured with Landsat data using a statistical downscaling approach, which is recommended for reliable large-scale modelling of water, heat and carbon exchange from permafrost landscapes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Air-sea gas exchange plays a key role in the cycling of greenhouse and other biogeochemically important gases. Although air-sea gas transfer is expected to change as a consequence of the rapid decline in summer Arctic sea ice cover, little is known about the effect of sea ice cover on gas exchange fluxes, especially in the marginal ice zone. During the Polarstern expedition ARK-XXVI/3 (TransArc, August/September 2011) to the central Arctic Ocean, we compared 222Rn/226Ra ratios in the upper 50 m of 14 ice-covered and 4 ice-free stations. At three of the ice-free stations, we find 222Rn-based gas transfer coefficients in good agreement with expectation based on published relationships between gas transfer and wind speed over open water when accounting for wind history from wind reanalysis data. We hypothesize that the low gas transfer rate at the fourth station results from reduced fetch due to the proximity of the ice edge, or lateral exchange across the front at the ice edge by restratification. No significant radon deficit could be observed at the ice-covered stations. At these stations, the average gas transfer velocity was less than 0.1 m/d (97.5% confidence), compared to 0.5-2.2 m/d expected for open water. Our results show that air-sea gas exchange in an ice-covered ocean is reduced by at least an order of magnitude compared to open water. In contrast to previous studies, we show that in partially ice-covered regions, gas exchange is lower than expected based on a linear scaling to percent ice cover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements of U concentration and 234U/238U ratio were made in five water samples from Deep Sea Drilling Project Hole 504B.The results indicate that a loss of U had occurred either during sampling or during the storage of the samples, probably as a result of adsorption by rust particles or by the walls of the sampling system. Within analytical uncertainty, the 234U/238U ratios in the samples were identical to those in unreacted seawater. Thus, it is not possible to detect any U exchange that may have occurred during the reaction of the solutions with the basement formation. Improvement in sampling technique is a necessity for future studies of uranium and probably other trace elements in drill hole water samples.