879 resultados para Sludge sedimentation rate
Resumo:
Ice-rafted debris mass accumulation rates (IRD MAR) at a drill site on the Antarctic continental margin are investigated to evaluate the linkages between East Antarctic Ice Sheet extent and Southern Ocean temperatures in the early to mid-Pliocene. ODP Site 1165 is within 400 km of the Antarctic coastline and in the direct pathway of icebergs released by the Amery Ice Shelf. The Amery Ice Shelf is the largest ice shelf in East Antarctica and it buttresses the Lambert Glacier drainage system, which accounts for 14% of the outflow from the East Antarctic Ice Sheet. IRD MAR were low during peak Southern Ocean warming in the early Pliocene. After a brief precursor, a tenfold increase in IRD MAR at 3.3 Ma marks the termination of the early Pliocene ice sheet minimum, coincident with the M2 glacial. For the mid-Pliocene, a strong correlation exists between the high-amplitude signal in the LR04 benthic stack and IRD MAR, suggesting linkages between East Antarctic ice extent, global ice volume and deep-water temperatures. The IRD record at Site 1165 provides evidence of greater sensitivity of the Lambert Glacier-Amery Ice Shelf system to Southern Ocean warming than is currently predicted by ice sheet models, which may relate to uncertainties in the understanding of ocean heat uptake, poleward heat transport and ice sheet-ocean interactions.
Resumo:
The Ocean Drilling Program (ODP) Site 959 was drilled in the northern border of the Côte d'Ivoire-Ghana Ridge at a water depth of 2100 m. Pleistocene total thickness does not exceed 20 m. Winnowing processes resulted in a low accumulation rate and notable stratigraphic hiatuses. During the Late Pleistocene, bottom circulation was very active and controlled laminae deposition (contourites) which increased the concentration of glauconitic infillings of foraminifera, and of volcanic glass and blue-green grains more rarely, with one or several subordinate ferromagnesian silicates. Volcanic glass generally was X-ray amorphous and schematically classified as basic to intermediate (44-60% SiO2). Opal-A or opal-CT suggested the beginning of the palagonitisation process, and previous smectitic deposits may have been eroded mechanically. The blue-green grains presented two main types of mineralogic composition: (1) neoformed K, Fe-smectite associated with zeolite (like phillipsite) and unequal amounts of quartz and anorthite; (2) feldspathic grains dominated by albite but including quartz, volcanic glass and smectites as accessory components. They were more or less associated with the volcanic glass. On the basis of their chemical composition, the genetic relationship between the blue-green grains and the volcanic glass seemed to be obvious although some heterogeneous grains seemed to be primary ignimbrite and not the result of glass weathering. The most reasonable origin of these pyroclastic ejecta would be explosive events from the Cameroon Volcanic Ridge, especially from the Sao Thome and Principe Islands and Mount Cameroon area. This is supported both by grain geochemistry and the time of volcanic activity, i.e. Pleistocene. After westward wind transport (some 1200 km) and ash fall-out, the subsequent winnowing by bottom currents controlled the concentration of the volcanic grains previously disseminated inside the hemipelagic sediment. Palagonitisation, and especially phillipsite formation, may result from a relatively rapid reaction during burial diagenesis (<1 m.y.), in deep-sea deposits at relatively low sedimentation rate. However, it cannot be excluded that the weathering had begun widely on the Cameroon Ridge before the explosive event.
Resumo:
One of the primary objectives of Leg 120 was to obtain a high-resolution Neogene stratigraphic section from the Kerguelen Plateau. Site 751, located in the central part of the Raggatt Basin on the Southern Kerguelen Plateau in 1633.8 m of water (57°43.56'S; 79°48.89'E), was selected as the dedicated Neogene site for this objective. High-resolution sampling at Site 751 was used to delineate in detail the Neogene ice-rafted debris (IRD) occurrences on the Kerguelen Plateau. The oldest IRD found at Site 751 was approximately 9.9 Ma, and it was not until approximately 8.5 Ma that significant concentrations of IRD were detected. The first major IRD event at this site occurred in the uppermost Miocene between 6.0 and 5.5 Ma. During this time period, a general climatic cooling and glacial expansion occurred on Antarctica. The late Miocene IRD event was followed by a continuous episode of elevated IRD deposition in the lowermost Pliocene between 4.5 and 4.1 Ma. The 0.4-m.y. duration and the timing of the early Pliocene IRD event on the Kerguelen Plateau corresponds with IRD fluxes observed on the Falkland Plateau and in the Weddell Abyssal Plain. This correspondence of data indicates that a major global climatic event occurred during the early Pliocene. The East Antarctic Ice Sheet may have experienced deglaciation between 4.5 and 4.1 Ma and, as a result, released large volumes of sediment-laden ice into the Southern Ocean.
Resumo:
The opening of the Tasmanian Gateway between Australia and Antarctica has long been considered a critical element in the initiation of the Antarctic Circumpolar Current, thermal isolation of Antarctica, and Cenozoic global cooling. The timing for the opening of the gateway to shallow-water circulation and subsequently to deep-water circulation was poorly known, however, and the dating of these events was a major objective of ODP Leg 189. Nannofossil data from Leg 189 sites and DSDP Site 281 in the Tasmanian Gateway suggest a 41-42 Ma age for the initiation of widespread glauconite deposition in the region, which coincided with a sharp drop in sedimentation rate. This is interpreted to be the opening of the gateway to shallow-water circulation, which occurred within the middle of the 51-33 Ma long-term cooling. The change from siliciclastic sediments to pelagic carbonates, the most conspicuous sedimentological and paleontological change in the region for the last 70 Ma and presumably the indicator for the opening of the gateway to deep-water circulation, is dated at about 31 Ma. This event is more than 2 my younger than the major high-latitude cooling in the earliest Oligocene, and thus cannot be the cause for the latter.
Resumo:
Die untersuchten Schluffe und Kiese sind unter kaltzeitlichen Bedingungen in einem See mit Schwimmpflanzengesellschaften abgelagert worden. Zur Sedimentationszeit gab es in der Umgebung des Sees eine tundrenartige Vegetation, die auch Steppenarten enthielt.
Resumo:
The Hg distribution and some mineralogical-geochemical features of bottom sediments up to a depth of 10 m in the Deryugin Basin showed that the high and anomalous Hg contents in the Holocene deposits are confined to a spreading riftogenic structure and separate fluid vents within it. The accumulations of Hg in the the sediments were caused by its fluxes from gas and low-temperature hydrothermal vents under favorable oceanological conditions in the Holocene. The two mainly responsible for the high and anomalous Hg contents are infiltration (fluxes of hydrothermal or gas fluids from the sedimentary cover) and plume (Hg precipitation from water plumes with certain hydrochemical conditions forming above endogenous sources). The infiltration anomalies of Hg were revealed in the following environments: (1) near gas vents on the northeastern Sakhalin slope, where high Hg contents are associated only with Se and were caused by the accumulation of gases ascending from beneath the gas hydrate layer; (2) in the area of inferred occasionally operating low-temperature hydrothermal seeps in the central part of the Deryugin Basin, in which massive barite chimneys, hydrothermal Fe-Mn crusts, and anomalous contents of Mn, Ba, Zn, and Ni in sediments develop.
Resumo:
Benthic foraminiferal faunas from three bathyal sequences provide a proxy record of oceanographic changes through the mid-Pleistocene transition (MPT) on either side of the Subtropical Front (STF), east of New Zealand. Canonical correspondence analyses show that factors related to water depth, latitude and climate cycles were more significant than oceanographic factors in determining changes in faunal assemblage composition over the last 1 Ma. Even so, mid-Pleistocene faunal changes are recognizable and can be linked to inferred palaeoceanographic causes. North of the largely stationary STF the faunas were less variable than to the south, perhaps reflecting the less extreme glacial-interglacial fluctuations in the overlying Subtropical Surface Water. Prior to Marine Isotope Stage (MIS) 21 and after MIS 15, the northern faunas had fairly constant composition, but during most of the MPT faunal composition fluctuated in response to climate-related food-supply variations. Faunal changes through the MPT suggest increasing food supply and decreasing dissolved bottom oxygen. South of the STF, beneath Subantarctic Surface Water, mid-Pleistocene faunas exhibited strong glacial-interglacial fluctuations, inferred to be due to higher interglacial nutrient supply and lower oxygen levels. The most dramatic faunal change in the south occurred at the end of the MPT (MIS 17- 12). with an acme of Abditodentrix pseudothalmanni, possibly reflecting higher carbon flux and lower bottom oxygen. This study suggests that the mid-Pleistocene decline and extinction of a group of elongate, cylindrical deep-sea foraminifera may have been related to decreased bottom oxygen concentrations as aresult of slower deep-water currents.
Resumo:
Twenty-two trace elements in 355 sediment samples from Site 997 on the Blake Ridge were examined by inductively coupled plasma-optical emission spectrometry and inductively coupled plasma-mass spectrometry, for respective fractions of acid-soluble and insoluble compositions. Downhole profiles of these elements exhibit complicated fluctuations throughout late Miocene to Pleistocene, principally due to the variations in the acid-soluble fraction. Noncarbonate composition is given from the acid-insoluble residues, which permits us to recognize secular feature of selected element variance for four intervals. These intervals (I: 0-183 mbsf; II: 183- 440 mbsf; III: 440-618 mbsf; and IV: 618-750 mbsf) are interpreted to have originated from changes in the suite of sediments of particular sources and chemical composition, sedimentation rate, dilution of biogenic carbonate abundance, and possibly the current system that controlled deposition and reworking of the terrigenous materials.
Resumo:
Speciations of sulfur (sulfide S, pyrite S, sulfate S) and of reactive iron (Fe3+, Fe2+, sulfide Fe) in bottom sediments have been studied in gravity cores and drill cores collected on the shelf of the southwest Caspian Sea. It has been shown that intensity of reduction processes, in particular sulfate reduction, as well as speciations of S and reactive Fe reflect the change of transgressive and regressive stages of the Caspian basin. Characteristic features for the investigated area are high sedimentation rate and high reactivity of organic matter entering bottom sediments.
Resumo:
Stable isotopes of sedimentary nitrogen and organic carbon are widely used as proxy variables for biogeochemical parameters and processes in the water column. In order to investigate alterations of the primary isotopic signal by sedimentary diagenetic processes, we determined concentrations and isotopic compositions of inorganic nitrogen (IN), organic nitrogen (ON), total nitrogen (TN), and total organic carbon (TOC) on one short core recovered from sediments of the eastern subtropical Atlantic, between the Canary Islands and the Moroccan coast. Changes with depth in concentration and isotopic composition of the different fractions were related to early diagenetic conditions indicated by pore water concentrations of oxygen, nitrate, and ammonium. Additionally, the nature of the organic matter was investigated by Rock-Eval pyrolysis and microscopic analysis. A decrease in ON during aerobic organic matter degradation is accompanied by an increase of the 15N/14N ratio. Changes in the isotopic composition of ON can be described by Rayleigh fractionation kinetics which are probably related to microbial metabolism. The influence of IN depleted in 15N on the bulk sedimentary (TN) isotope signal increases due to organic matter degradation, compensating partly the isotopic changes in ON. In anoxic sediments, fixation of ammonium between clay lattices results in a decrease of stable nitrogen isotope ratio of IN and TN. Changes in the carbon isotopic composition of TOC have to be explained by Rayleigh fractionation in combination with different remineralization kinetics of organic compounds with different isotopic composition. We have found no evidence for preferential preservation of terrestrial organic carbon. Instead, both TOC and refractory organic carbon are dominated by marine organic matter. Refractory organic carbon is depleted in 13C compared to TOC.
Resumo:
Samples from the upper portion of a cyclic pelagic carbonate sediment sequence in Deep-Sea Drilling Project (DSDP) hole 503B (4.0°N, 95.6°W) are the first group to be analyzed for paleoceanographic and paleoclimatic proxy-indicators of ice volume, deep ocean and surface water circulation, and atmospheric circulation in order to resolve the complex origin of the cyclicity. Temporal resolution is taken from the delta18O time scale, most other parameters are calculated in terms of their mass flux to the seafloor. CaCO3 percent in the sediments fluctuates in the well-known Pacific pattern and is higher during glacial times. The fluxes of opal and organic carbon have patterns similar to each other and show a variability of a factor of 2.5 to 4. The longer organic carbon record shows flux maxima during both glacial and interglacial times. The accumulation patterns of both opal and organic carbon suggest that the variability in surface water productivity and/or seafloor preservation of those materials is not simply correlated to glacial or interglacial periods. Eolian dust fluxes are greater during interglacial periods by factors of 2 to 5, indicating that eolian source regions in central and northern South America were more arid during interglacial periods. The record of eolian grain size provides a semiquantitative estimation of the intensity of the transporting winds. The eolian data suggest more intense atmospheric circulation during interglacial periods, opposite to the anticipated results. We interpret this observation as recording the southerly shift of the intertropical convergence zone to the latitude of hole 503B during glaciations.
Resumo:
Spatiotemporal patterns of carbonate dissolution provide a critical constraint on carbon input during an ancient (~55.5 Ma) global warming event known as the Paleocene-Eocene thermal maximum (PETM), yet the magnitude of lysocline shoaling in the Southern Ocean is poorly constrained due to limited spatial coverage in the circum-Antarctic region. This shortcoming is partially addressed by comparing patterns of carbonate sedimentation at the Site 690 PETM reference section to those herein reconstructed for nearby Site 689. Biochemostratigraphic correlation of the two records reveals that the first ~36 ka of the carbon isotope excursion (CIE) signaling PETM conditions is captured by the Site 689 section, while the remainder of the CIE interval and nearly all of the CIE recovery are missing due to a coring gap. A relatively expanded stratigraphy and higher carbonate content at mid-bathyal Site 689 indicate that dissolution was less severe than at Site 690. Thus, the bathymetric transect delimited by these two PETM records indicates that the lysocline shoaled above Site 689 (~1,100 m) while the calcite compensation depth remained below Site 690 (~1,900 m) in the Weddell Sea region. The ensuing recovery of carbonate sedimentation conforms to a bathymetric trend best explained by gradual lysocline deepening as negative feedback mechanisms neutralized ocean acidification. Further, biochemostratigraphic evidence indicates the tail end of the CIE recovery interval at both sites has been truncated by a hiatus most likely related to vigorous production and advection of intermediate waters.
Resumo:
The magnitude and the chronology of anthropogenic impregnation by Hg and other trace metals of environmental concern (V, Cr, Ni, Cu, Zn, Ag, Cd and Pb, including its stable isotopes) in the sediments are determined at the DYFAMED station, a site in the Ligurian Sea (Northwestern Mediterranean) chosen for its supposed open-sea characteristics. The DYFAMED site (VD) is located on the right levee of the Var Canyon turbidite system, at the end of the Middle Valley. In order to trace the influence of the gravity current coming from the canyon on trace metal distribution in the sediment, we studied an additional sediment core (VA) from a terrace of the Var Canyon, and material collected in sediment traps at the both sites at 20 m above sea bottom. The patterns of Hg and other trace element distribution profiles are interpreted using stable Pb isotope ratios as proxies for its sources, taking into account the sedimentary context (turbidites, redox conditions, and sedimentation rates). Major element distributions, coupled with the stratigraphic examination of the sediment cores point out the high heterogeneity of the deposits at VA, and major turbiditic events at both sites. At the DYFAMED site, we observed direct anthropogenic influence in the upper sediment layer (<2 cm), while on the Var Canyon site (VA), the anthropization concerns the whole sedimentary column sampled (19 cm). Turbiditic events superimpose their specific signature on trace metal distributions. According to the 210Pbxs-derived sedimentation rate at the DYFAMED site (0.4 mm yr-1), the Hg-enriched layer of the top core corresponds to the sediment accumulation of the last 50 years, which is the period of the highest increase in Hg deposition on a global scale. With the hypothesis of the absence of significant post-depositional redistribution of Hg, the Hg/C-org ratio changes between the surface and below are used to estimate the anthropogenic contribution to the Hg flux accumulated in the sediment. The Hg enrichment, from pre-industrial to the present time is calculated to be around 60%, consistent with estimations of global Hg models. However, based on the chemical composition of the trapped material collected in sediment traps, we calculated that epibenthic mobilization of Hg would reach 73%. Conversely, the Cd/C-org ratio decreases in the upper 5 cm, which may reflect the recent decrease of atmospheric Cd inputs or losses due to diagenetic processes.
Resumo:
Neogene to Quaternary records of biogenic opal contents and opal accumulation rates are presented for Sites 1095, 1096, and 1101, which were drilled during Ocean Drilling Program Leg 178 in the Bellingshausen Sea, a marginal sea in the eastern Pacific sector of the Southern Ocean. The opal records in the drift sediments on the continental rise west of the Antarctic Peninsula provide signals of paleoproductivity, although they are influenced by dissolution in the water column and the sediment column. Opal contents at Sites 1095, 1096, and 1101 show similar long-term trends through the Neogene and Quaternary, whereas the opal accumulation rates exhibit marked discrepancies, which are caused by local differences in opal preservation linked to local variations of bottom current-induced supply of lithogenic detritus. We used a regression describing the relationship between opal preservation and sedimentation rate to extract the signal of primary opal deposition on the seafloor in the Bellingshausen Sea from the opal accumulation in the drift deposits. On long-term timescales, the reconstructed opal depositional rates show patterns similar to those of the opal contents and a much better coherency between the different locations on the Antarctic Peninsula continental rise. Therefore, the estimated opal depositional rates are suggested to represent a suitable proxy for paleoproductivity in the drift setting of the Bellingshausen Sea. Supposing that the sea-ice coverage within the Antarctic Zone was the main factor controlling biological productivity in the Bellingshausen Sea, and thus the estimated opal depositional rates on the continental rise, we reconstructed paleoceanographic long-term changes during the Neogene and Quaternary considering the climatic control on regional and global scales. Slightly enhanced opal depositional rates during the late Miocene are interpreted to indicate warmer climatic conditions in the vicinity of the Antarctic Peninsula than at present. The contribution of heat from the Northern Component Water (NCW) into the Southern Ocean seems only to have played a subordinate role during that time. High opal depositional rates during the early Pliocene document a strong reduction of sea-ice coverage and relatively warm climatic conditions in the Bellingshausen Sea. The early onset of the Pliocene warmth points to a positive feedback of regional Antarctic climate on the global thermohaline circulation. A decrease of opal deposition between 3.1 and 1.8 Ma likely reflects sea-ice expansion in response to reduced NCW flow, caused by the onset and intensification of Northern Hemisphere glaciation. Throughout the Quaternary, a relatively constant level of opal depositional rates in the Bellingshausen Sea indicates stable climatic conditions in the Antarctic Peninsula area.
Resumo:
Although the climate development over the Holocene in the Northern Hemisphere is well known, palaeolimnological climate reconstructions reveal spatiotemporal variability in northern Eurasia. Here we present a multi-proxy study from north-eastern Siberia combining sediment geochemistry, and diatom and pollen data from lake-sediment cores covering the last 38,000 cal. years. Our results show major changes in pyrite content and fragilarioid diatom species distributions, indicating prolonged seasonal lake-ice cover between ~13,500 and ~8,900 cal. years BP and possibly during the 8,200 cal. years BP cold event. A pollen-based climate reconstruction generated a mean July temperature of 17.8°C during the Holocene Thermal Maximum (HTM) between ~8,900 and ~4,500 cal. years BP. Naviculoid diatoms appear in the late Holocene indicating a shortening of the seasonal ice cover that continues today. Our results reveal a strong correlation between the applied terrestrial and aquatic indicators and natural seasonal climate dynamics in the Holocene. Planktonic diatoms show a strong response to changes in the lake ecosystem due to recent climate warming in the Anthropocene. We assess other palaeolimnological studies to infer the spatiotemporal pattern of the HTM and affirm that the timing of its onset, a difference of up to 3,000 years from north to south, can be well explained by climatic teleconnections. The westerlies brought cold air to this part of Siberia until the Laurentide ice-sheet vanished 7,000 years ago. The apparent delayed ending of the HTM in the central Siberian record can be ascribed to the exceedance of ecological thresholds trailing behind increases in winter temperatures and decreases in contrast in insolation between seasons during the mid to late Holocene as well as lacking differentiation between summer and winter trends in paleolimnological reconstructions.