620 resultados para Nominal compositions
Resumo:
The purpose of this work is to study the mobility and budget of Fe isotopes in the oceanic crust and in particular during low-temperature interaction of seawater with oceanic basalt. We carried out this investigation using samples from Ocean Drilling Program (ODP) Site 801C drilled during Leg 129 and Leg 185 in Jurassic Pacific oceanic crust seaward of the Mariana Trench. The site comprises approximately 450 m of sediment overlying a section of 500 m of basalt, which includes intercalated pelagic and chemical sediments in the upper basaltic units and two low-temperature (10-30°C) ocherous Si-Fe hydrothermal deposits. Fe was chemically separated from 70 selected samples, and 57Fe/54Fe ratios were measured by MC-ICP-MS Isoprobe. The isotopic ratios were measured relative to an internal standard solution and are reported relative to the international Fe-standard IRMM-14. Based on duplicate measurements of natural samples, an external precision of 0.2? (2 sigma) has been obtained. The results indicate that the deep-sea sediment section has a restricted range of d57Fe, which is close to the igneous rock value. In contrast, large variations are observed in the basaltic section with positive d57Fe values (up to 2.05?) for highly altered basalts and negative values (down to ?2.49?) for the associated alteration products and hydrothermal deposits. Secondary Fe-minerals, such as Fe-oxyhydroxides or Fe-bearing clays (celadonite and saponite), have highly variable d57Fe values that have been interpreted as resulting from the partial oxidation of Fe(2+) leached during basalt alteration and precipitated as Fe(3+)-rich minerals. In contrast, altered basalts at Site 801C, which are depleted in Fe (up to 80%), display an increase in d57Fe values relative to fresh values, which suggest a preferential leaching of light iron during alteration. The apparent fractionation factor between dissolved Fe(2+) and Fe remaining in the mineral is from 0.5? to 1.3? and may be consistent with a kinetic isotope fractionation where light Fe is stripped from the minerals. Alternatively, the formation of secondary clays minerals, such as celadonite during basalt alteration may incorporate preferentially the heavy Fe isotopes, resulting in the loss of light Fe isotopes in the fluids. Because microbial processes within the oceanic crust are of potential importance in controlling rates of chemical reactions, Fe redox state and Fe-isotope fractionation, we evaluated the possible effect of this deep biosphere on Fe-isotope signatures. The Fe-isotope systematics presented in this study suggest that, even though iron behavior during seafloor weathering may be mediated by microbes, such as iron-oxidizers, d57Fe variations of more than 4? may also be explained by abiotic processes. Further laboratory experiments are now required to distinguish between various processes of Fe-isotope fractionation during seafloor weathering.
Resumo:
We have analysed the concentrations of Li, K, Rb, Cs, and B, and the isotopic ratios of Li and B of a suite of pore fluids recovered from ODP Sites 1037 (Leg 169; Escanaba Trough) and 1034 (Leg 169S; Saanich Inlet). In addition, we have analysed dissolved K, Rb, and Cs concentrations for estuarine mixing of the Ganges-Brahmaputra river system. Together, these data sets have been used to assess the role of sediments in the marine geochemical cycles of the alkali elements and boron. Uptake onto clay minerals during estuarine mixing removes 20-30% of the riverine input of dissolved Cs and Rb to the oceans. Prior to this study, the only other recognised sink of Rb and Cs was uptake during low-temperature alteration of the oceanic crust. Even with this additional sink there is an excess of inputs over outputs in their modern oceanic mass balance. Pore fluid data show that Li and Rb are transferred into marine sediments during early diagenesis. However, modeling of the Li isotope systematics of the pore fluids from Site 1037 shows that seawater Li taken up during marine sedimentation can be readily returned to solution in the presence of less hydrated cations, such as NH4+. This process also appears to result in high concentrations of pore fluid Cs (relative to local seawater) due to expulsion of adsorbed Cs from cation exchange sites. Flux calculations based on pore fluid data for a series of ODP sites indicate that early diagenesis of clay sediments removes around 8% of the modern riverine input of dissolved Li. Although NH4+-rich fluids do result in a flux of Cs to the oceans, on the global scale this input only augments the modern riverine Cs flux by ~3%. Nevertheless, this may have implications for the fate of radioactive Cs in the natural environment and waste repositories.
Resumo:
The presence of sedimentary organic matter blanketing midocean ridge crests has a potentially strong impact on metal transport in hydrothermal vent fluids. To constrain the role of organic matter in metal mobility during hydrothermal sediment alteration, we reacted organic-rich diatomaceous ooze from Guaymas Basin, Gulf of California, and organic-poor hemipelagic mud from Middle Valley, northern Juan de Fuca Ridge, with seawater and a Na-Ca-K-Cl fluid of seawater chlorinity, at 275° to 400°C, 350 to 500 bars, and initial fluid: sediment mass ratios ranging from 1.6 to 9.8. Reaction of these fluids with both sediment types released CO2 and high concentrations of ore-forming metals (Fe, Mn, Zn, Pb) to solution. Relatively low concentrations of Cu were observed in solution and likely reflect the reducing conditions that resulted from the presence of sedimentary organic matter. Both the concentrations of CO2 and dissolved metals were lower in fluids reacted with Middle Valley sediment compared with aqueous concentrations in fluids reacted with Guaymas Basin sediment. During alteration of both sediment types, metal concentrations varied strongly as a function of temperature, increasing by up to an order of magnitude over the 75°C range of each experiment. Major element fluid chemistry and observed alteration assemblages suggest that during hydrothermal alteration of organic-lean sediment from Middle Valley a feldspar-quartz-illite mineral assemblage buffered in situ pH. In contrast, data from the experimental alteration of organic-rich Guaymas Basin sediment suggest that a calcite-plagioclase-quartz assemblage regulated in situ pH. Fluid speciation calculations suggest that in situ pH during Guaymas Basin sediment alteration was lower than during alteration of Middle Valley sediment and accounts for the substantially greater metal mobility at a given temperature and pressure during the former experiment. Comparison of our results with the results of basalt alteration experiments indicate that except for Cu, hydrothermal sediment alteration results in equal or greater concentrations of ore-forming metals at a given temperature and pressure. Accordingly, the presence of ore-forming metals in fluids currently venting from sediment-covered hydrothermal systems at concentrations substantially lower than in fluids from bare-rock systems may reflect chemical reequilibration during subsurface cooling within the sediment pile.