660 resultados para 181-1125


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Planktonic foraminifera are used to identify late Pliocene-Quaternary near surface water masses on the northeastern flank of Chatham Rise by comparison with faunas in core-tops east of New Zealand. In an overview study, distance measures, ordinations, and discriminant analysis are applied to 32 faunas from Site 1123B to identify similar faunas among 35 core-tops between 35 and 61°S east of New Zealand. Many Site 1123B faunas in the 2.72 myr interval sampled compare with those in core-tops on the northern side of Chatham Rise from a similar latitude, and are identified as transitional zone assemblages now associated with the subtropical gyre. This result is consistent with studies of late Quaternary planktonic foraminifera from this region and suggests that, typically, the Subtropical Front was locked to Chatham Rise through glacial and interglacial periods, at least back to the late Pliocene. However, a fauna at ca. 1.17 Ma compares with subpolar assemblages in core-tops between 44 and 48°S and identifies cooler surface water. Expectedly, closer sampling may reveal additional periods when southern water moved over the northeastern flank of Chatham Rise. Although the dominance of Globorotalia inflata, a species typical of the southern margin of subtropical gyres, is a principal feature of Site 1123B faunas, in a minority it is replaced as the most abundant species by dextral populations of Neogloboquadrina pachyderma, particularly about the time of the middle Pleistocene transition. Close analogues of these variant transitional assemblages are not present in core-tops about Chatham Rise but sediment trap and coretop data from other regions suggest that they identify high fertility in the mixed layer associated with upwelling or mixing of water masses. The proportion of sinistrally coiled Neogloboquadrina pachyderma rises to ca. 0.6 between ca. 2.45 and 2.57 Ma, soon after the intensification of Northern Hemisphere glaciation. Although the coiling data indicate subantarctic near surface water, the species remains rare. As the faunas retain their transitional zone character, only minor entrainment of subantarctic water may have occurred.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable isotope records were generated for a late Pliocene-early Pleistocene interval from Ocean Drilling Program (ODP) Site 1123 in the southwest Pacific (41°47 S, 171°30 W; 3290 m water depth). Based on these data, new revisions were made to the shipboard splice and composite section. The isotope records will be used to evaluate the influence of North Atlantic and Southern Ocean deepwater masses on water entering the Pacific in the Deep Western Boundary Current. Three holes were cored at Site 1123, yielding a complete composite section over approximately the last 4.7 m.y. A representative spliced record ("the splice") was developed aboard ship based on magnetic susceptibility, gamma ray attenuation bulk density, and percent reflectance data from the three adjacent holes (Carter, McCave, Richter, Carter, et al., 1999, doi:10.2973/odp.proc.ir.181.2000). No gaps in the sedimentary record were detected for the multiple-cored section of Site 1123. In addition to the isotope data, postcruise revisions to the splice and composite section based on stable isotope data are described here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Planktic foraminiferal faunas and modern analogue technique estimates of sea surface temperature (SST) for the last 1 million years (Myr) are compared between core sites to the north (ODP 1125, 178 faunas) and south (DSDP 594, 374 faunas) of the present location of the Subtropical Front (STF), east of New Zealand. Faunas beneath cool subtropical water (STW) north of the STF are dominated by dextral Neogloboquadrina pachyderma, Globorotalia inflata, and Globigerina bulloides, whereas faunas to the south are strongly dominated by sinistral N. pachyderma (80-95% in glacials), with increased G. bulloides (20-50%) and dextral N. pachyderma (15-50%) in interglacials (beneath Subantarctic Water, or SAW). Canonical correspondence analysis indicates that at both sites, SST and related factors were the most important environmental influences on faunal composition. Greater climate-related faunal fluctuations occur in the south. Significant faunal changes occur through time at both sites, particularly towards the end of the mid-Pleistocene climate transition, MIS18-15 (e.g., decline of Globorotalia crassula in STW, disappearance of Globorotalia puncticulata in SAW), and during MIS8-5. Interglacial SST estimates in the north are similar to the present day throughout the last 1 Myr. To the south, interglacial SSTs are more variable with peaks 4-7 °C cooler than present through much of the early and middle Pleistocene, but in MIS11, MIS5.5, and early MIS1, peaks are estimated to have been 2-4 °C warmer than present. These high temperatures are attributed to southward spread of the STF across the submarine Chatham Rise, along which the STF appears to have been dynamically positioned throughout most of the last 1 Myr. For much of the last 1 Myr, glacial SST estimates in the north were only 1-2 °C cooler than the present interglacial, except in MIS16, MIS8, MIS6, and MIS4-2 when estimates are 4-7 °C cooler. These cooler temperatures are attributed to jetting of SAW through the Mernoo Saddle (across the Chatham Rise) and/or waning of the STW current. To the south, glacial SST estimates were consistently 10-11 °C cooler than present, similar to temperatures and faunas currently found in the vicinity of the Polar Front. One interpretation is that these cold temperatures reflect thermocline changes and increased Circumpolar Surface Water spinning off the Subantarctic Front as an enhanced Bounty Gyre along the south side of the Chatham Rise. For most of the last 1 Myr, the temperature gradient across the STF has been considerably greater than the present 4 °C. During glacial episodes, the STF in this region did not migrate northwards, but instead there was an intensification of the temperature gradient across it (interglacials 4-11 °C; glacials 8-14 °C).