697 resultados para Synechococcus.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increases in ultraviolet radiation (UVR) and CO2 affect phytoplankton growth and mortality in a variety of different ways. However, in situ responses of natural phytoplankton communities to climate change, as well as its effects on phytoplankton annual cycles, are still largely unknown. Although temperature and UVR have been increasing in temperate latitudes during winter, this season is still particularly neglected in climate change studies, being considered a non-active season regarding phytoplankton growth and production. Additionally, coastal lagoons are highly productive ecosystems and very vulnerable to climate change. This study aims, therefore, to evaluate the short-term effects of increased UVR and CO2 on the composition and growth of winter phytoplankton assemblages in a temperate coastal lagoon. During winter 2012, microcosm experiments were used to evaluate the isolated and combined effects of UVR and CO2, under ambient and high CO2 treatments, exposed to ambient UV levels and photosynthetically active radiation (PAR), or to PAR only. Phytoplankton composition, abundance, biomass and photosynthetic parameters were evaluated during the experiments. Significant changes were observed in the growth of specific phytoplankton groups, leading to changes in community composition. The cyanobacterium Synechococcus was dominant at the beginning of the experiment, but it was negatively affected by UVR and CO2. Diatoms clearly benefited from high CO2 and UVR, particularly Thalassiosira. Despite the changes observed in specific phytoplankton groups, growth and production of the whole phytoplankton community did not show significant responses to UVR and/or CO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A land based mesocosm experiment focusing on the study of the simultaneous impact of warming and acidification on the planktonic food web of the Eastern Mediterranean took place in August-September 2013 at the mesocosm facilities of HCMR in Crete (CRETACOSMOS). Two different pCO2 (present day and predicted for year 2100) were applied in triplicate mesocosms of 3 m**3. This was tested in two different temperatures (ambient seawater T and ambient T plus 3°C). Twelve mesocosms in total were incubated in two large concrete tanks. Temperature was controlled by sophisticated, automated systems. A large variety of chemical, biological and biochemical variables were studied, including salinity, temperature, light and alkalinity measurements, inorganic and organic, particulate and dissolved, nutrient analyses, biological stock (Chla concentration, enumeration and community composition of microbial, phyto- and zooplankton organisms) and rate (primary, bacterial, viral production, copepod egg production, zooplankton grazing, N2 fixation, P uptake) measurements, bacterial DNA extraction and phytoplankton transcriptomics, calcifiers analyses. Twenty three scientists from 6 Institutes and 5 countries participated in this experiment.