689 resultados para Niobium Pentachloride
Resumo:
The first series of Soviet standard reference samples of composition of ore materials and ocean pelagic sediments has been created. It includes iron-manganese nodules (SDO-4, SDO-5 and SDO-6), ore crusts (SDO-7) diatomaceous ooze (SDO-8), and deep-sea red clays (SDO-9). The standards are intended to serve as a metrologic basis for physical, physicochemical and chemical analyses of iron-manganese minerals and ocean sediments. The standards are provided with certified analyses of rock-forming components and certain trace elements. Certified characteristics are based on statistical analysis of data obtained from an inter-laboratory experiment involving analysis of the standard reference samples by a variety of methods.
Resumo:
In the Tyrrhenian Sea (Western Mediterranean), unusual reddish, soft to lithified, dolomitic sediments up to 45 m thick overlie igneous crust at the base of thick Pliocene-Quaternary deep-sea sediment successions in the Marsili (Site 650) and Vavilov (Site 651) basins. These sediments also overlie the Gortani Ridge, a basaltic Seamount near the base of the Sardinian continental margin (Site 655). At both basinal sites (650, 651), the lowest sediments are dolomitic, with manganese oxide (MnO) segregations. Whole-rock X-ray diffraction indicates abundant dolomite and quartz, with subordinate calcite, illite (authigenic), feldspar and minor kaolinite, chlorite, and anhydrite. Chemical analyses show strong enrichment in magnesium oxide (MgO) and MnO relative to shale or deep-sea clay. Mg and Mn correlate positively and exhibit decreasing concentrations up the succession in the Marsili Basin (Site 650). The following scenario is proposed: peridotites were exposed on the seafloor in the Vavilov Basin (Site 651) and then eroded, depositing talc in local fine-grained dolomitic sediments within the igneous basement. After local magmatism ended, the igneous basement at each site subsided rapidly (about 800 m/m.y.) and was blanketed with calcareous and clay-rich oozes. During early diagenesis (from isotopic evidence; McKenzie et al., this volume) tepid fluids, of modified seawater composition, reacted with and dolomitized the overlying deep-sea sediments. At Site 651 additional Mg may have been extracted from asthenosphere peridotite cored at shallow depths (about 100 m). One can hypothesize that fluids rich in Mg and Mn were flushed from the igneous basement, triggered by extensional faulting and local tilting during subsidence of the basement, and that these fluids then dolomitized the base of the overlying sediment succession. Late tectonic movements in the Vavilov Basin (Site 651) fractured already lithified dolomitic sediments and more reducing (? hydrothermal) fluids locally remobilized Fe and Mn and corroded dolomite crystals.
Resumo:
Twenty-six samples representing the wide range of lithologies (low- and intermediate-Ca boninites and bronzite andesites, high-Ca boninites, basaltic andesites-rhyolites) drilled during Leg 125 at Sites 782 and 786 on the Izu-Bonin outer-arc high have been analyzed for Sr, Nd, and Pb isotopes. Nd-Sr isotope covariations show that most samples follow a trend parallel to a line from Pacific MORB mantle (PMM) to Pacific Volcanogenic sediment (PVS) but displaced slightly toward more radiogenic Sr. Pb isotope covariations show that all the Eocene-Oligocene samples plot along the Northern Hemisphere Reference Line, indicating little or no Pb derived from subducted pelagic sediment in their source. Two young basaltic andesite clasts within sediment do have a pelagic sediment signature but this may have been gained by alteration rather than subduction. In all isotopic projections, the samples form consistent groupings: the tholeiites from Site 782 and Hole 786A plot closest to PMM, the boninites and related rocks from Sites 786B plot closest to PVS, and the boninite lavas from Hole 786A and late boninitic dikes from Hole 786B occupy an intermediate position. Isotope-trace element covariations indicate that these isotopic variations can be explained by a three-component mixing model. One component (A) has the isotopic signature of PMM but is depleted in the more incompatible elements. It is interpreted as representing suboceanic mantle lithosphere. A second component (B) is relatively radiogenic (epsilon-Nd = ca 4-6; 206Pb/204Pb = ca 19.0-19.3; epsilon-Sr = ca -10 to -6)). Its trace element pattern has, among other characteristics, a high Zr/Sm ratio, which distinguishes it from the ìnormalî fluid components associated with subduction and hotspot activity. There are insufficient data at present to tie down its origin: probably it was either derived from subducted lithosphere or volcanogenic sediment fused in amphibolite facies; or it represents an asthenospheric melt component that has been fractionated by interaction with amphibole-bearing mantle. The third component (C) is characterized by high contents of Sr and high epsilon-Sr values and is interpreted as a subducted fluid component. The mixing line on a diagram of Zr/Sr against epsilon-Sr suggests that component C may have enriched the lithosphere (component A) before component B. These components may also be present on a regional basis but, if so, may not have had uniform compositions. Only the boninitic series from nearby Chichijima would require an additional, pelagic sediment component. In general, these results are consistent with models of subduction of ridges and young lithosphere during the change from a ridge-transform to subduction geometry at the initiation of subduction in the Western Pacific.
Resumo:
Basement rocks from the Ontong Java Plateau are tholeiitic basalts that appear to record very high degrees of partial melting, much like those found today in the vicinity of Iceland. They display a limited range of incompatible element and isotopic variation, but small differences are apparent between sampled sites and between upper and lower groups of flows at Ocean Drilling Program Site 807.40Ar-39Ar ages of lavas from Site 807 and Deep Sea Drilling Project Site 289 are indistinguishable about an early Aptian mean of 122 Ma (as are preliminary data for the island of Malaita at the southern edge of the plateau), indicating that plateau-building eruptions ended more or less simultaneously at widely separated locations. Pb-Nd-Sr isotopes for lavas from Sites 289, 803, and 807, as well as southern Malaita, reflect a hotspot-like source with epsilon-Nd(T) = +4.0 to +6.3, (87Sr/86Sr)T = 0.70423-0.70339, and 206Pb/204Pb = 18.245-18.709 and possessing consistently greater 208Pb/204Pb for a given 206Pb/204Pb than Pacific MORB. The combination of hotspot-like mantle source, very high degrees of melting, and lack of a discernible age progression is best explained if the bulk of the plateau was constructed rapidly above a surfacing plume head, possibly that of the Louisville hotspot. Basalt and feldspar separates indicate a substantially younger age of ~90 Ma for basement at Site 803; in addition, volcaniclastic layers of mid-Cenomanian through Coniacian age occur at DSDP Site 288, and beds of late Aptian-Albian age are found at Site 289. Therefore, at least some volcanism continued on the plateau for 30 m.y. or more. The basalts at Site 803 are chemically and isotopically very similar to those at the ~122 Ma sites, suggesting that hot plume-type mantle was present beneath the plateau for an extended period or at two different times. Surviving seamounts of the Louisville Ridge formed between 70 and 0 Ma have much higher 206Pb/204Pb than any of the plateau basalts. Thus, assuming the Louisville hotspot was the source of the plateau lavas, a change in the hotspot's isotopic composition may have occurred between roughly 70 and 90 Ma; such a change may have accompanied the plume-head to plume-tail transition. Similar shifts from early, lower 206Pb/204Pb to subsequently higher 206Pb/204Pb values are found in several other oceanic plateau-hotspot and continental flood basalt-hotspot systems, and could reflect either a reduction in the supply of low 206Pb/204Pb mantle or an inability of some off-ridge plume-tails to melt refractory low 206Pb/204Pb material.
Resumo:
The Lower Cretaceous tholeiitic basalt cored at Site 738, on the southernmost part of the Kerguelen Plateau, shows anomalous Sr, Nd, and Pb isotopic compositions compared to other lavas from Kerguelen Island and the Kerguelen Plateau. The strongly negative value of eNd (- 8.5) and high 207Pb/204Pb ratio (15.71) reflect a long-term evolution in a source high in Nd/Sm and µ. These geochemical properties, not observed in the Indian Ocean mantle plumes (St. Paul, Kerguelen Islands), have been reported for alkali lavas erupted in East Antarctica, thus suggesting that they originate from the Gondwana subcontinental lithosphere.
Resumo:
Basalts recovered from Sites 595 and 596 on Mesozoic crust in the southwest Pacific range from olivine-bearing tholeiites to ferrobasalts. Despite having undergone extensive low-grade alteration, which has raised K and Rb abundances, the basalts have consistent interelement ratios of Ti, Zr, Hf, rare-earth elements, Y, Th, Ik, and Nb. La/Ta (-18), Lan/Ybn (0.6), Ti/Zr (115), Zr/Nb (20), and Th/Hf (0.08) ratios all fall within the range of N-type mid-ocean-ridge basalt. The basalts from Sites 595 and 596 indicate that the Mesozoic Pacific crust was derived from a mantle source by processes similar to those operating at the present-day East Pacific Rise.
Resumo:
New and published analyses of major element oxides (SiO2, TiO2, Al2O3, FeO*, MnO, MgO, CaO, K2O, Na2O and P2O5) from the central Izu Bonin and Mariana arcs (IBM) were compiled in order to investigate the evolution of the IBM in terms of major elements since arc inception at ~49 million years ago. The database comprises ?3500 volcanic glasses of distal tephra fallout and ?500 lava samples, ranging from the Quaternary to mid-Eocene in age. The data were corrected to 4 wt% MgO in order to display the highly resolved temporal trends. These trends show that the IBM major elements have always been "arc-like" and clearly distinct from N-MORB. Significant temporal variations of some major element oxides are apparent. The largest variations are displayed by K4.0. The data support a model wherein the K2O variability is caused by the addition of slab component with strongly differing K2O contents to a fairly depleted subarc mantle; variable extents of melting, or mantle heterogeneity, appear to play a negligible role. The other major element oxides are controlled by the composition and processes of the subarc mantle wedge. The transition from the boninitic and tholeiitic magmatism of the Eocene and Oligocene to the exclusively tholeiitic magmatism of the Neogene IBM is proposed to reflect a change in the composition of the subarc mantle wedge. The early boninitic magmas originate from an ultra-depleted subarc mantle, that is residual to either the melting of E-MORB mantle, or of subcontinental lithospheric mantle. During the Eocene and Oligocene, this residual mantle is gradually replaced by Indian MORB mantle advected from the backarc regions. The Indian MORB mantle is more radiogenic in Nd isotope ratios but also more fertile with respect to major and trace elements. Therefore the Neogene tholeiites have higher Al2O3 and TiO2 contents and lower mg# numbers at given SiO2 content. After the subarc mantle replacement was complete in the late Oligocene or early Miocene, the Neogene IBM entered a "steady state" that is characterized by the continuous advection of Indian MORB mantle from the reararc, which is fluxed by fluids and melt components from slab. The thickness of the IBM crust must have grown with time, but any effects of crustal thickening on the major element chemistry of the IBM magmas appear to be minor relative to the compositional changes that are related to source composition. Therefore next to the processes of melting, the composition of the mantle sources must play a major role in creating substantiative heterogeneities in the major element chemistry of the arc crust.
Resumo:
The basement of southern Kirwanveggen (western Dronning Maud Land) is formed by a SSW-dipping section consisting of (from SW to NE): migmatic gneisses; granitoid; low-grade/prograde meta-pelites, meta-psammites and meta-basalts (= "Polaris Formation"); ortho-gneiss; quartzite mylonite; Polaris Formation; quartzite mylonite; meta-turbidites. These units are (partly) separated by at least four SSW-dipping, NE to N directed major thrusts. Most probably, this thrust system is of Pan-African age. Towards north, the section is followed by the molasse-like Urfjell Group, deposited later than approx. 550 Ma and earlier than 450 Ma. Similarities with the Pan-African of the Shackleton Range (thrusting, molasse) led to the assumption, that the East/West Gondwana suture runs from the Shackleton Range towards Sor Rondane (eastern Dronning Maud Land) passing southern Kirwanveggen at its south-east.
Resumo:
Diabasic rocks were recovered at Sites 469 and 471 on IPOD/DSDP Leg 63. The diabasic rocks are composed mainly of Plagioclase, clinopyroxene, and low-temperature alteration products. In addition to these phases, a considerable amount of primary biotite and lesser colorless amphibole are observed in some of the Site 471 diabases. Major and trace element data suggest that these rocks are tholeiitic; however, their highly altered nature obscures their petrologic affinity with the DSDP Leg 63 tholeiitic basalts and others from the nearby Pacific ocean floor. It is likely that the Site 469 and 471 diabasic rocks represent products of off-ridge intrusive activity.
Resumo:
This study was aimed at reconstructing a sequence of events in the magmatic and metamorphic evolution of peridotites, gabbroids, and trondhjemites from internal oceanic complexes of the Ashadze and Logachev hydrothermal vent fields. Collections of plutonic rocks from Cruises 22 and 26 of R/V "Professor Logachev", Cruise 41 of R/V "Akademik Mstislav Keldysh", and from the Serpentine Russian-French expedition aboard R/V "Pourquoi pas?" were objects of this study. Data reported here suggest that the internal oceanic complexes of the Ashadze and Logachev fields formed via the same scenario in these two regions of the Mid-Atlantic Ridge. On the other hand, an analysis of petrological and geochemical characteristics of the rocks indicated that the internal oceanic complexes of the MAR axial zone between 12°58'N and 14°45'N show pronounced petrological and geochemical heterogeneity manifested in variations in degree of depletion of mantle residues and in Nd isotopic compositions of rocks from the gabbro-peridotite association. Trondhjemites from the Ashadze hydrothermal field can be considered as partial melting products of gabbroids under influence of hydrothermal fluids. It was supposed that presence of trondhjemites in internal oceanic complexes of MAR can be used as a marker for the highest temperature deep-rooted hydrothermal systems. Perhaps, the region of the MAR axial zone, in which petrologically and geochemically contrasting internal oceanic complexes are spatially superimposed, serves as an area for development of large hydrothermal clusters with considerable ore-forming potential.