991 resultados para Klamath Project (U.S.)
Resumo:
On Deep Sea Drilling Project Leg 54, we recovered upper Pliocene (Globigerinoides obliquus: PL6 zone) to Pleistocene sediments from the equatorial East Pacific Rise (EPR) and Galapagos spreading center (GSC). Progressively older sediments were drilled at increasing distances from the crest, with the exception of the sediment drilled in the deepest trough known in the Siqueiros fracture zone. The anomalous age obtained at the latter site suggests that the basalt which was drilled may represent fracture zone volcanism. Paleoenvironmental analysis using the planktonic foraminifers at the EPR sites indicated the presence of environmental cycles of shorter wave length during the interval from 0 to 0.24 Ma, whereas cycles of longer wave length occurred from 0.43 to 2.17 Ma. The planktonic foraminiferal taphocoenoses at the EPR sites were strongly affected by selective dissolution which indicated that these EPR sites have been near either the lysocline or carbonate compensation surface since the upper Pliocene. The planktonic foraminiferal thanatocoenoses at the GSC sites were preserved better than those at the EPR sites. The number of planktonic foraminiferal species generally was greatly reduced in the green mud associated with the GSC hydrothermal mounds. More species were found in older than in younger green mud; this suggests that there probably was an increase in the rate of production of green mud sometime after the initiation of the hydrothermal system.
Resumo:
On Leg 55, cores were takenfrom three seamounts in the Emperor Seamount chain: Ojin, Nintoku, and Suiko Seamounts. At the drilling sites the water depth was 1300 to 1700 meters; the maximum thickness of the sediment column was 180 meters at Site 433.
Resumo:
Heavy-mineral assemblages in the cored sediments from DSDP Legs 56 and 57 show a distinct change of source rocks, from older sedimentary rocks during the Oligocene to volcanic rocks during the Miocene through Pleistocene. The former might have been supplied by the "Oyashio ancient landmass," and the latter from the volcanic areas in Hokkaido and northeast Honshu. This indicates a shift of the Japanese Islands toward the continent.