652 resultados para Geodesic Compositions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fine-grained clay subfractions (SFs) with particle size of <0.1, 0.1-0.2, 0.2-0.3, 0.3-0.6, 0.6-2.0, and 2-5 µm separated from claystone of Upper Precambrian Pumanskaya and Poropelonskaya formations on the Srednii Peninsula were studied by transmission electron microscopy, X-ray diffraction, and Rb-Sr methods. All subfractions consist of low-temperature illite and chlorite, and contribution of chlorite decreases with diminishing particle size. The crystallinity index and I002/I001 ratio increase from coarse- to fine-grained SFs. Leaching by ammonium acetate solution and Rb-Sr systematics in combination with mineralogical and morphological data indicate that illite in Upper Proterozoic claystone from the Srednii Peninsula formed during three time intervals: 810-830, 610-620, and about 570 Ma ago. The first generation of this mineral with low Rb/Sr ratio dominates in coarse-grained SFs while the second and third generations with a high Rb/Sr ratio prevail in fine-grained SFs. All of three generations are known in Poropelon claystone, whereas Puman claystone contains only illite of the first and second generations. Geological processes responsible for multistage illite evolution in claystones are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geochemical changes in organic matter of bottom sediments from the Mozambique Basin at the river-sea barrier from the mouths of the Zambezi and Limpopo rivers toward the pelagic zone are discussed. Changes in bitumen, hydrolyzable material, humic acids, amino acids, n-alkanes, and polycyclic aromatic compounds resulting from genetic and diagenetic factors are described. This information is significant for paleoceanology reconstructions and for knowing ways of organic matter transformation into fossil forms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The principal gaseous carbon-containing components identified in the first 400 m of sediment at Deep Sea Drilling Project Site 533, Leg 76, are methane (CH4) and carbon dioxide (CO2). Below a sub-bottom depth of about 25 m, sediment cores commonly contained pockets caused by the expansion of gas upon core recovery. The carbon isotopic composition (d13C per mil relative to PDB standard) of CH4 and CO2 in these gas pockets has been measured, resulting in the following observations: (1) d13C-CH4 values increase with depth from approximately -94 per mil in the uppermost sediment to about -66 per mil in the deepest sediment, reflecting a systematic but nonlinear depletion of 12C with depth. (2) d13C-CO2 values also increase with depth of sediment from about -25 per mil to about -4 per mil, snowing a depletion of 12C that closely parallels the trend of the isotopic composition of CH4. The magnitude and parallel distribution of d13C values for both CH4 and CO2 are consistent with the concept that the formation of the CH4 resulted from the microbiological reduction of CO2 from organic substances. These results imply that CH4 and CO2 incorporated in gas hydrates at this site are biogenic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During ODP Leg 168, 10 sites were drilled across the eastern flank of the Juan de Fuca Ridge (JdFR), to examine the conditions of fluid-rock interaction in three distinct hydrothermal regimes (referred to as the Hydrothermal Transition (HT), Buried Basement (BB) and Rough Basement (RB) transects), extending over a ~120 km linear transect perpendicular to the spreading ridge. This was carried out in an attempt to constrain the conditions and processes that control the location, style and magnitude of low temperature (<150°C) fluid-rock interaction within this setting. This paper presents new data on the petrology, mineral chemistry and whole rock strontium and oxygen isotopic compositions of basalts from the eastern flank of the JdFR, in order to investigate the extent, style and sequence of low-temperature hydrothermal alteration and to establish how the hydrothermal regime evolved with time. Throughout the flank, a progressive sequence of low-temperature hydrothermal alteration has been identified, marked by changes in the dominant secondary mineral assemblage, changing from: chlorite+chlorite/smectite; to iron oyxhydroxide+celadonite; to saponite+/-pyrite; culminating at present with Ca- to CaMg(+/-Fe,Mn)-carbonate. The changes in secondary mineralogy have been used to infer a series of systematic shifts in the conditions of alteration that occurred as the basement moved off-axis and was progressively buried by sediment. In general, hydrothermal alteration of the uppermost oceanic crust commenced under open, oxidative conditions, with interaction between unmodified to slightly modified seawater and basaltic crust, to a regime in which circulation of a strongly modified seawater-derived fluid was more restricted, and alteration occurred under non-oxidative conditions. Across the flank, petrological observations and microprobe analyses indicate that the observed ranges in secondary mineral composition are directly related to changes in the geochemical and textural characteristics of the basement, as well as to interaction between fluids and phases from the four stages of alteration. This is suggestive of an increase in fluid-rock increased with time. Whole rock 87Sr/86Sr and d18O analyses of basalts from across the eastern flank of the JdFR reinforce petrological observations, with 87Sr/86Sr and d18O values slightly elevated above accepted pristine MORB values for this region. These results are consistent with an increase in the amount of fluid-rock interaction with time. Across the flank, enrichment in the 87Sr/86Sr and d18O relative to MORB, is influenced by a number of factors, including: local and regional variations in the crustal lithology and structure; the age of the crust; the extent of bulk rock alteration; and theoretically, the relative abundance of different isotopically-enriched secondary mineral phases in the crust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this work is to study the mobility and budget of Fe isotopes in the oceanic crust and in particular during low-temperature interaction of seawater with oceanic basalt. We carried out this investigation using samples from Ocean Drilling Program (ODP) Site 801C drilled during Leg 129 and Leg 185 in Jurassic Pacific oceanic crust seaward of the Mariana Trench. The site comprises approximately 450 m of sediment overlying a section of 500 m of basalt, which includes intercalated pelagic and chemical sediments in the upper basaltic units and two low-temperature (10-30°C) ocherous Si-Fe hydrothermal deposits. Fe was chemically separated from 70 selected samples, and 57Fe/54Fe ratios were measured by MC-ICP-MS Isoprobe. The isotopic ratios were measured relative to an internal standard solution and are reported relative to the international Fe-standard IRMM-14. Based on duplicate measurements of natural samples, an external precision of 0.2? (2 sigma) has been obtained. The results indicate that the deep-sea sediment section has a restricted range of d57Fe, which is close to the igneous rock value. In contrast, large variations are observed in the basaltic section with positive d57Fe values (up to 2.05?) for highly altered basalts and negative values (down to ?2.49?) for the associated alteration products and hydrothermal deposits. Secondary Fe-minerals, such as Fe-oxyhydroxides or Fe-bearing clays (celadonite and saponite), have highly variable d57Fe values that have been interpreted as resulting from the partial oxidation of Fe(2+) leached during basalt alteration and precipitated as Fe(3+)-rich minerals. In contrast, altered basalts at Site 801C, which are depleted in Fe (up to 80%), display an increase in d57Fe values relative to fresh values, which suggest a preferential leaching of light iron during alteration. The apparent fractionation factor between dissolved Fe(2+) and Fe remaining in the mineral is from 0.5? to 1.3? and may be consistent with a kinetic isotope fractionation where light Fe is stripped from the minerals. Alternatively, the formation of secondary clays minerals, such as celadonite during basalt alteration may incorporate preferentially the heavy Fe isotopes, resulting in the loss of light Fe isotopes in the fluids. Because microbial processes within the oceanic crust are of potential importance in controlling rates of chemical reactions, Fe redox state and Fe-isotope fractionation, we evaluated the possible effect of this deep biosphere on Fe-isotope signatures. The Fe-isotope systematics presented in this study suggest that, even though iron behavior during seafloor weathering may be mediated by microbes, such as iron-oxidizers, d57Fe variations of more than 4? may also be explained by abiotic processes. Further laboratory experiments are now required to distinguish between various processes of Fe-isotope fractionation during seafloor weathering.