930 resultados para Dredge
Resumo:
The monograph summarizes results of studies of hydrothermal fields on the ocean floor, hydrothermal plumes and metalliferous sediments. Hydrothermal ore manifestations formed in different geodynamic settings, with different character of volcanism in different facial conditions of deposition are described. Causes of non-uniformity of hydrothermal system functioning in different parts of the ocean and therefore variability of hydrothermal deposits are under consideration. On the base of found relationships of these irregularities with geodynamics, volcanism and sedimentation a new classification of hydrothermal processes and genetic models of hydrothermal ore formation in the ocean have been created. Regularities of hydrothermal sedimentary material dispersion in bottom waters are discussed.
Resumo:
In fault zones of the East Indian Ridge and adjacent areas of ocean floor almost monomineral sepiolite- and palygorskite clays have been found. They have been studied by a complex of optical and physical methods. Formation of authigenic sepiolites and palygorskite had occurred under influence of Mg- and Si-rich hydrothermal solutions by metasomatic replacement of montmorillonite clays, or by precipitation from saturated solutions in cracks of various rocks.
Resumo:
A manganese oxide encrustation (2.5 kg) was dredged, in an island arc setting, downslope of Bertrand bank, a seamount culminating at 70-m depth and located NNE of Grande-Terre, Guadeloupe, and SE of Antigua, West Indies. A thorough texturai analysis indicated a rhythmic precipitation and growth polarity as well as mineralogical ( 10 A tektomanganate) and geochemical (low concentrations of Ni, Cu, Co, Zn, Pb and REE) criteria, point to a submarine hydrothermal origin for most of the sample. The crust was coated with a fine ferromanganese oxide cortex deposited iii a "normal" oceanic environment; it also included micritic fillings, a main pyroclastic zone near the top of the crust, and a Mg-Al sulphate deposit. Planktonic foraminifera coeval with the precipitation of the manganese oxide indicate an age of ca. 3 m. y. (upper Pliocene); i.e., more than 20 m. y. after the cessation of the volcanic activity of the Lesser Antilles outer arc that was responsible for the buildup of the Bertrand seamount. Furthermore, the genesis of the crust is not linked to the activity of the contemporaneous inner arc (Miocene to Present), particularly of its nearmost segment (Basse Terre, Guadeloupe-Montserrat) located about 50 km to the West. The authors suggest that the manganese oxide is the result of convective circulation of sea water through a faulted system occurring in an area of intense seismic activity. The remobilization of chemical elements (Mn, S, etc.) within the seamount volcanic core bas probably affected a substratum that was still hydrothermally altered during the previous volcanic activity of the outer arc. The authors insist on the interest in using texturai analysis for Fe/Mn oxide investigations.
Resumo:
Manganese-iron oxide concretions are presently forming on Patrick Sill in upper Jervis Inlet. The marine geology of Patrick Sill and the adjoining basins (Queen's Reach and Princess Royal Reach) was studied to define the environment in which the concretions form. The river at the inlet head is the principal source of sediment to the upper basin. The average grain size of surficial bottom sediments within this basin decreases uniformly with distance from the source. Patrick Sill separates the upper from the lower basin. The sediment distribution pattern within the lower basin differs markedly from the upper basin as there is no dominant source of material but rather many localized sources. Abundant shallow marine faunal remains recovered in deep water sediment samples indicate that sediments deposited as deltas off river and stream mouths periodically slump to the basin floors. Geologic and optical turbidity information for the upper basin can best be explained by slumping from the delta at the inlet head with the initiation of turbidity or density currents. Patrick Sill appears to create a downstream barrier to this flow. The mineralogy of the bottom sediments indicates derivation from a granitic terrain. If this is so, the sediments presently being deposited in both basins are reworked glacial materials initially derived by glacial action outside the present watershed. Upper Jervis Inlet is mapped as lying within a roof pendant of pre-batholithic rocks, principally slates. Patrick Sill is thought to be a bedrock feature mantled with Pleistocene glacial material. The accumulation rate of recent sediments on the sill is low especially in the V-notch or medial depression. The manganese-iron oxide concretions are forming within the depression and apparently nowhere else in the study area. Also forming within the depression are crusts of iron oxide and what are tentatively identified as glauconite-montmorillonoid pellets. The concretions are thought to form by precipitation of manganese-iron oxides on pebbles and cobbles lying at the sediment water interface. The oxide materials are mobile in the reducing environment of the underlying clayey-sand sediment but precipitate on contact with the oxygenating environment of the surficial sediments. The iron crusts are thought to be forming on extensive rocky surfaces above the sediment water interface. The overall appearance and evidence of rapid formation of the crusts suggests they formed from a gel in sea water. Reserves of manganese-iron concretions on Patrick Sill were estimated to be 117 metric tons. Other deposits of concretions have recently been found in other inlets and in the Strait of Georgia but, to date, the extent of these has not been determined.
(Table 2, page 277), Major and trace elements geochemical analysis of the layers of the TECHNO crust