978 resultados para Ampharetidae, biomass, wet mass
Resumo:
Seagrass is expected to benefit from increased carbon availability under future ocean acidification. This hypothesis has been little tested by in situ manipulation. To test for ocean acidification effects on seagrass meadows under controlled CO2/pH conditions, we used a Free Ocean Carbon Dioxide Enrichment (FOCE) system which allows for the manipulation of pH as continuous offset from ambient. It was deployed in a Posidonia oceanica meadow at 11 m depth in the Northwestern Mediterranean Sea. It consisted of two benthic enclosures, an experimental and a control unit both 1.7 m**3, and an additional reference plot in the ambient environment (2 m**2) to account for structural artifacts. The meadow was monitored from April to November 2014. The pH of the experimental enclosure was lowered by 0.26 pH units for the second half of the 8-month study. The greatest magnitude of change in P. oceanica leaf biometrics, photosynthesis, and leaf growth accompanied seasonal changes recorded in the environment and values were similar between the two enclosures. Leaf thickness may change in response to lower pH but this requires further testing. Results are congruent with other short-term and natural studies that have investigated the response of P. oceanica over a wide range of pH. They suggest any benefit from ocean acidification, over the next century (at a pH of 7.7 on the total scale), on Posidonia physiology and growth may be minimal and difficult to detect without increased replication or longer experimental duration. The limited stimulation, which did not surpass any enclosure or seasonal effect, casts doubts on speculations that elevated CO2 would confer resistance to thermal stress and increase the buffering capacity of meadows.
Resumo:
The meiofauna of the deep sea areas (800 - 5500 m) between Madeira and Lisbon was quantitatively investigated during "Meteor" cruises in 1970 and 1971. With respect to numbers and biomass the meiofauna (especially nematodes and harpacticoid copepods) of the investigated areas is relatively poor averaging about 66,000 individuals per m**2 and 34 mg per m**2 wet weight biomass (polychaetes and foraminifera excluded). Regional differences are more pronounced in the investigated areas than differences due to depth. A comparison with the results of other authors from other areas confirms the regional variations in the meiofauna abundance of the deep sea.
Resumo:
The Southern Ocean ecosystem at the Antarctic Peninsula has steep natural environmental gradients, e.g. in terms of water masses and ice cover, and experiences regional above global average climate change. An ecological macroepibenthic survey was conducted in three ecoregions in the north-western Weddell Sea, on the continental shelf of the Antarctic Peninsula in the Bransfield Strait and on the shelf of the South Shetland Islands in the Drake Passage, defined by their environmental envelop. The aim was to improve the so far poor knowledge of the structure of this component of the Southern Ocean ecosystem and its ecological driving forces. It can also provide a baseline to assess the impact of ongoing climate change to the benthic diversity, functioning and ecosystem services. Different intermediate-scaled topographic features such as canyon systems including the corresponding topographically defined habitats 'bank', 'upper slope', 'slope' and 'canyon/deep' were sampled. In addition, the physical and biological environmental factors such as sea-ice cover, chlorophyll-a concentration, small-scale bottom topography and water masses were analysed. Catches by Agassiz trawl showed high among-station variability in biomass of 96 higher systematic groups including ecological key taxa. Large-scale patterns separating the three ecoregions from each other could be correlated with the two environmental factors, sea-ice and depth. Attribution to habitats only poorly explained benthic composition, and small-scale bottom topography did not explain such patterns at all. The large-scale factors, sea-ice and depth, might have caused large-scale differences in pelagic benthic coupling, whilst small-scale variability, also affecting larger scales, seemed to be predominantly driven by unknown physical drivers or biological interactions.