920 resultados para Age, 14C calibrated, OxCal 3.8


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Short-term changes in sea surface conditions controlling the thermohaline circulation in the northern North Atlantic are expected to be especially efficient in perturbing global climate stability. Here we assess past variability of sea surface temperature (SST) in the northeast Atlantic and Norwegian Sea during Marine Isotope Stage (MIS) 2 and, in particular, during the Last Glacial Maximum (LGM). Five high-resolution SST records were established on a meridional transect (53°N-72°N) to trace centennial-scale oscillations in SST and sea-ice cover. We used three independent computational techniques (SIMMAX modern analogue technique, Artificial Neural Networks (ANN), and Revised Analog Method (RAM)) to reconstruct SST from planktonic foraminifer census counts. SIMMAX and ANN reproduced short-term SST oscillations of similar magnitude and absolute levels, while RAM, owing to a restrictive analog selection, appears less suitable for reconstructing "cold end" SST. The SIMMAX and ANN SST reconstructions support the existence of a weak paleo-Norwegian Current during Dansgaard-Oeschger (DO) interstadials number 4, 3, 2, and 1. During the LGM, two warm incursions of 7°C water to occurred in the northern North Atlantic but ended north of the Iceland Faroe Ridge. A rough numerical estimate shows that the near-surface poleward heat transfer from 53° across the Iceland-Faroe Ridge up to to 72° N dropped to less than 60% of the modern value during DO interstadials and to almost zero during DO stadials. Summer sea ice was generally confined to the area north of 70°N and only rarely expanded southward along the margins of continental ice sheets. Internal LGM variability of North Atlantic (>40°N) SST in the GLAMAP 2000 compilation (Sarnthein et al., 2003, doi:10.1029/2002PA000771; Pflaumann et al., 2003, doi:10.1029/2002PA000774) indicates maximum instability in the glacial subpolar gyre and at the Iberian Margin, while in the Nordic Seas, SST was continuously low.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Barrow, the northernmost point in Alaska, is one of the most intensively studied areas in the Arctic. However, paleoenvironmental evidence is limited for northern Alaska for the Lateglacial-Holocene transition. For a regional paleoenvironmental reconstruction, we investigated a permafrost ice-wedge tunnel near Barrow, Alaska. The studied site was first excavated in the early 1960s and intercepts a buried ice-wedge system at 3-6 m depth below the surface. A multi-methodological approach was applied to this buried ice-wedge system and the enclosing sediments, which in their combination, give new insight into the Late Quaternary environmental and climate history. Results of geochronological, sedimentological, cryolithological, paleoecological, isotope geochemical and microbiological studies reflect different stages of mid to late Wisconsin (MW to LW), Allerod (AD), Younger Dryas (YD), Preboreal (PB), and Late Holocene paleoenvironmental evolution. The LW age of the site is indicated by AMS dates in the surrounding sediments of 21.7 kyr BP at the lateral contact of the ice-wedge system as well as 39.5 kyr BP below the ice-wedge system. It is only recently that in this region, stable isotope techniques have been employed, i.e. to characterize different types of ground ice. The stable isotope record (oxygen: d18O; hydrogen: dD) of two intersecting ice wedges suggests different phases of the northern Alaskan climate history from AD to PB, with radiocarbon dates from 12.4 to 9.9 kyr BP (ranging from 14.8 to 10.6 kyr cal BP). Stable isotope geochemistry of ice wedges reveals winter temperature variations of the Lateglacial-Holocene transition including a prominent YD cold period, clearly separated from the warmer AD and PB phases. YD is only weakly developed in summer temperature indicators (such as pollen) for the northern Alaska area, and by consequence, the YD cold stadial was here especially related to the winter season. This highlights that the combination of winter and summer indicators comprehensively describes the seasonality of climate-relevant processes in discrete time intervals. The stable isotope record for the Barrow buried ice-wedge system documents for the first time winter climate change at the Lateglacial-Holocene transition continuously and at relatively high (likely centennial) resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although climate records from several locations around the world show nearly synchronous and abrupt changes, the nature of the inferred teleconnection is still poorly understood. On the basis of preserved laminations and molybdenum enrichments in open margin sediments we demonstrate that the oxygen content of northeast Pacific waters at 800 m depth during the Bölling-Alleröd warm period (15-13 kyr) was greatly reduced. Existing oxygen isotopic records of benthic and planktonic foraminifera suggest that this was probably due to suppressed ventilation at higher latitudes of the North Pacific. Comparison with ventilation records for the North Atlantic indicates an antiphased pattern of convection relative to the North Pacific over the past 22 kyr, perhaps due to variations in water vapor transport across Central America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to test the sensitivity of marine primary productivity in the midlatitude open ocean North Atlantic to changes in the Atlantic Meridional Overturning Circulation (AMOC), we investigated two spliced sediment cores from a site south of the Azores Islands at the northern rim of the North Atlantic subtropical gyre. For this purpose we analyzed coccolithophore assemblages, diatom abundances, alkenones and conducted X-ray fluorescence (XRF) core scanning. During times of reduced AMOC, especially during Heinrich event 1 (H1) and the Younger Dryas, we observe a strong increase in productivity as evidenced by high coccolith accumulation rates, high alkenone concentrations/accumulation rates, high Ba/Ti-ratios, high abundances of diatoms and low abundances ofF. profunda. The increased productivity is partly caused by a more southern position of the Azores Front (AzF), and hence by a less northward extension of the subtropical gyre, as deduced from high abundances of the temperate coccolithophore species G. muellerae and low abundances of subtropical species (Oolithotus spp., Umbellosphaera spp., Umbilicosphaeraspp.). However, to explain the full range of the observed productivity increase, other factors like increased westerly winds and advection of nutrient-rich surface waters have also to be considered. Because this pattern can also be observed in other sediment cores from the midlatitude North Atlantic, we propose that during times of reduced AMOC there has been a band of strongly increased productivity across the North Atlantic at the northern rim of the contracted subtropical gyre, which partly counteracts the decreased organic carbon pump in the high northern latitudes.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advection of relatively fresh Java Sea water through the Sunda Strait is presently responsible for the low-salinity "tongue" in the eastern tropical Indian Ocean with salinities as low as 32 per mil. The evolution of the hydrologic conditions in the eastern tropical Indian Ocean since the last glacial period, when the Sunda shelf was exposed and any advection via the Sunda Strait was cutoff, and the degree to which these conditions were affected by the Sunda Strait opening are not known. Here we have analyzed two sediment cores (GeoB 10042-1 and GeoB 10043-3) collected from the eastern tropical Indian Ocean off the Sunda Strait that cover the past ~40,000?years. We investigate the magnitude of terrigenous supply, sea surface temperature (SST), and seawater d18O (d18Osw) changes related to the sea level-driven opening of the Sunda Strait. Our new spliced records off the Sunda Strait show that during the last glacial, average SST was cooler and d18Osw was higher than elsewhere in the eastern tropical Indian Ocean. Seawater d18O decreased ~0.5 per mil after the opening of the Sunda Strait at ~10 kyr B.P. accompanied by an SST increase of 1.7°C. We suggest that fresher sea surface conditions have persisted ever since due to a continuous transport of low-salinity Java Sea water into the eastern tropical Indian Ocean via the Sunda Strait that additionally increased marine productivity through the concomitant increase in terrigenous supply.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents aggradation rates supplemented for the first time by carbonate accumulation rates from Mediterranean cold-water coral sites considering three different regional and geomorphological settings: (i) a cold-water coral ridge (eastern Melilla coral province, Alboran Sea), (ii) a cold-water coral rubble talus deposit at the base of a submarine cliff (Urania Bank, Strait of Sicily) and (iii) a cold-water coral deposit rooted on a predefined topographic high overgrown by cold-water corals (Santa Maria di Leuca coral province, Ionian Sea). The mean aggradation rates of the respective cold-water coral deposits vary between 10 and 530 cm kyr?1 and the mean carbonate accumulation rates range between 8 and 396 g cm?2 kyr?1 with a maximum of 503 g cm?2 kyr?1 reached in the eastern Melilla coral province. Compared to other deep-water depositional environments the Mediterranean cold-water coral sites reveal significantly higher carbonate accumulation rates that were even in the range of the highest productive shallow-water Mediterranean carbonate factories (e.g. Cladocora caespitosa coral reefs). Focusing exclusively on cold-water coral occurrences, the carbonate accumulation rates of the Mediterranean cold-water coral sites are in the lower range of those obtained for the prolific Norwegian coral occurrences, but exhibit much higher rates than the cold-water coral mounds off Ireland. This study clearly indicates that cold-water corals have the potential to act as important carbonate factories and regional carbonate sinks within the Mediterranean Sea. Moreover, the data highlight the potential of cold-water corals to store carbonate with rates in the range of tropical shallow-water reefs. In order to evaluate the contribution of the cold-water coral carbonate factory to the regional or global carbonate/carbon cycle, an improved understanding of the temporal and spatial variability in aggradation and carbonate accumulation rates and areal estimates of the respective regions is needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The subarctic North Pacific Ocean holds a large CO2 reservoir that is currently isolated from the atmosphere by a low-salinity layer. It has recently been hypothesized that the reorganization of these high-CO2 waters may have played a crucial role in the degassing of carbon dioxide to the atmosphere during the last deglaciation. This reorganization would leave some imprint on paleo-productivity records. Here we present 230Th-normalized biogenic fluxes from an intermediate depth sediment core in the Northwest Pacific (RC10-196, 54.7°N, 177.1°E, 1007 m) and place them within the context of a synthesis of previously-published biogenic flux data from 49 deep-sea cores north of 20°N, ranging from 420 to 3968 m water depth. The 230Th-normalized opal, carbonate, and organic carbon fluxes from RC10-196 peak approximately 13,000 calendar years BP during the Bølling/Allerød (B/A) period. Our data synthesis suggests that biogenic fluxes were in general lowest during the last glacial period, increased somewhat in the Northwest Pacific during Heinrich Event 1, and reached a maximum across the entire North Pacific during the B/A period. We evaluate several mechanisms as possible drivers of deglacial change in biogenic fluxes in the North Pacific, including changes in preservation, sediment focusing, sea ice extent, iron inputs, stratification, and circulation shifts initiated in the North Atlantic and North Pacific. Our analysis suggests that while micronutrient sources likely contributed to some of the observed changes, the heterogeneity in timing of glaciogenic retreat and sea level make these mechanisms unlikely causes of region-wide contemporaneous peaks in export production. We argue that paleo-observations are most consistent with ventilation increases in both the North Pacific (during H1) and North Atlantic (during B/A) being the primary drivers of increases in biogenic flux during the deglaciation, as respectively they were likely to bring nutrients to the surface via increased vertical mixing and shoaling of the global thermocline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to assess how insolation-driven climate change superimposed on sea level rise and millennial events influenced the Red Sea during the Holocene, we present new paleoceanographic records from two sediment cores to develop a comprehensive reconstruction of Holocene circulation dynamics in the basin. We show that the recovery of the planktonic foraminiferal fauna after the Younger Dryas was completed earlier in the northern than in the central Red Sea, implying significant changes in the hydrological balance of the northern Red Sea region during the deglaciation. In the early part of the Holocene, the environment of the Red Sea closely followed the development of the Indian summer monsoon and was dominated by a circulation mode similar to the current summer circulation, with low productivity throughout the central and northern Red Sea. The climatic signal during the late Holocene is dominated by a faunal transient event centered around 2.4 ka BP. Its timing corresponds to that of North Atlantic Bond event 2 and to a widespread regionally recorded dry period. This faunal transient is characterized by a more productive foraminiferal fauna and can be explained by an intensification of the winter circulation mode and high evaporation. The modern distribution pattern of planktonic foraminifera, reflecting the prevailing circulation system, was established after 1.7 ka BP.