787 resultados para deep-water corals


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Only a few studies have examined the variation of oxygen and hydrogen isotopes of seawater in NE Atlantic water masses, and data are especially sparse for intermediate and deep-water masses. The current study greatly expands this record with 527 d18O values from 47 stations located throughout the mid- to low-latitude NE Atlantic. In addition, dD was analyzed in the 192 samples collected along the GEOTRACES North Atlantic Transect GA03 (GA03_e=KN199-4) and the 115 Iberia-Forams cruise samples from the western and southern Iberian margin. An intercomparison study between the two stable isotope measurement techniques (cavity ring-down laser spectroscopy and magnetic-sector isotope ratio mass spectrometry) used to analyze GA03_e samples reveals relatively good agreement for both hydrogen and oxygen isotope ratios. The surface (0-100 m) and central (100-500 m) water isotope data show the typical, evaporation related trend of increasing values equatorward with the exception for the zonal transect off Cape Blanc, NW Africa. Off Cape Blanc, surface water isotope signatures are modified by the upwelling of fresher Antarctic Intermediate Water (AAIW) that generally has isotopic values of 0.0 to 0.5 per mil for d18O and 0 to 2 per mil for dD. Along the Iberian margin the Mediterranean Outflow Water (MOW) is clearly distinguished by its high d18O (0.5-1.1 per mil) and dD (3-6 per mil) values that can be traced into the open Atlantic. Isotopic values in the NE Atlantic Deep Water (NEADW) are relatively low (d18O: -0.1 to 0.5 per mil; dD: -1 to 4 per mil) and show a broader range than observed previously in the northern and southern convection areas. The NEADW is best observed at GA03_e Stations 5 and 7 in the central NE Atlantic basin. Antarctic Bottom Water isotope values are relatively high indicating modification of the original Antarctic source water along the flow path. The reconstructed d18O-salinity relationship for the complete data set has a slope of 0.51, i.e., slightly steeper than the 0.46 described previously by Pierre et al. (1994, J. Mar. Syst. 5 (2), 159-170.) for the tropical to subtropical Northeast Atlantic. This slope decreases to 0.46 for the subtropical North Atlantic Central Water (NACW) and the MOW and to 0.32 for the surface waters of the upper 50 m. The dD-salinity mixing lines have estimated slopes of 3.01 for the complete data, 1.26 for the MOW, 3.47 for the NACW, and 2.63 for the surface waters. The slopes of the d18O-dD relationship are significantly lower than the one for the Global Meteoric Water Line with 5.6 for the complete data set, 2.30 for the MOW, 4.79 for the NACW, and 3.99 for the surface waters. The lower slopes in all the relationships clearly reflect the impact of the evaporation surplus in the subtropics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The first radiocarbon chronology for sediments of the Argentine basin has been determined using accelerator mass spectrometer (AMS) analyses of 54 total organic carbon samples from four box and two piston cores collected from the downstream and upstream sides of two central Argentine Basin mudwaves. Throughout the Holocene, sediment from the geomorphically defined upstream side of each wave accumulated at rates of 30 to 105 cm/1000 years. Sediments from the downstream side of each wave accumulated at rates of 2 to 10 cm/1000 years in the late and early Holocene, while the mid Holocene is characterized by sedimentation rates less than 1.0 cm/1000 years. During the mid-Holocene, increased aridity reduced chemical weathering and the flow of the rivers draining to the continental shelf, causing a concomitant decrease in fine-grained terrigenous input to the basin as evidenced by decreased sedimentation rates, lower N/C ratios, and depleted delta13Corg values. It is estimated that all of the organic carbon deposited in the central basin during the mid-Holocene was of a marine origin. During the late and early Holocene, however, approximately 35% of the organic carbon deposited was of terrestrial origin. Bottom water flow speeds in the late Holocene were estimated using a lee-wave model and found to average 14 cm/s. This estimate is comparable to 10 cm/s mean and 15-20 cm/s maximum flow speeds measured by current meters deployed within the basin. Flow speeds in the Argentine Basin were 10% higher than today from 8000 to 2000 B.P., and are consistent with a general invigoration of thermohaline circulation that began between 9000 and 8000 B.P. It is proposed that the introduction of warm, salty Indian Ocean water into the northern North Atlantic at 9000 B.P. was the mechanism that provided the excess salt needed to stabilize the North Atlantic Deep Water thermohaline circulation system in its present mode.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Late Pleistocene intermediate water ventilation history in the northeastern Pacific has been inferred from benthic foraminiferal carbon isotopic data from seven California margin basins. Secular variations in oceanic d13C recorded at North Pacific ODP Site 849 were subtracted from each basin record leaving a residual d13C history that reflects variations in ventilation. During the previous interglacial intermediate waters above 2000m contained less oxygen than they do today or Pacific deep water at Site 849 was better ventilated. Intermediate water ventilation began to improve during oxygen isotope stage 4 and continued to improve throughout stages 3 and 2. This enhanced ventilation was not contemporaneous at all depths and appears to have progressed upwards through the water column. The diachronous nature of these changes suggest that there was not simply an "on"/"off" mechanism which resulted in higher or lower ventilation in the North Pacific during the last glacial cycle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding changes in ocean circulation during the last deglaciation is crucial to unraveling the dynamics of glacial-interglacial and millennial climate shifts. We used neodymium isotope measurements on postdepositional iron-manganese oxide coatings precipitated on planktonic foraminifera to reconstruct changes in the bottom water source of the deep western North Atlantic at the Bermuda Rise. Comparison of our deep water source record with overturning strength proxies shows that both the deep water mass source and the overturning rate shifted rapidly and synchronously during the last deglacial transition. In contrast, any freshwater perturbation caused by Heinrich event 1 could have only affected shallow overturning. These findings show how changes in upper-ocean overturning associated with millennial-scale events differ from those associated with whole-ocean deglacial climate events.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A history of Mesozoie and Cenozoic palaeoenvironments of the North Atlantie Oeean has been developed based on a detailed analysis of the temporal and spatial distribution of major pelagie sediment facies, of hiatuses. of bulk sediment accumulation rates, and of concentrations and fluxes of the main deep-sea sediment components. The depositional history of the North Atlantic can be subdivided into three major phase: (a) Late Jurassie and Early Cretaceous phase: clastic terrigenous and biogenic pelagic sediment components accumulated rapidly under highly productive surface water masses over the entire occan basin; (b) Late Cretaceous to Early Miocene phase: relatively little terrigenous and pelagic biogenic sediment reached the North Atlantic Ocean floor, intensive hiatus formation occurred at variable rates, and wide stretches of the deep-ocean floor were covered by slowly accumulating terrigenous muds: (c) Middle Miocene to Recent phase: accumulation rates of biogenic and terrigenous deep-sea sediment components increased dramatically up to Quaternary times, rates of hiatus formation and the intensity of deep-water circulation inferred from them seem to have decreased. However, accumulation rate patterns of calcareous pelagic sediment components suggest that large scale reworking and di splacement of deep-sea sediments occurred at a variable rate over wide areas of the North Atlantic during this period.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The flow of deep-water masses is a key component of heat transport in the modern climate system, yet the role of deep-ocean heat transport during periods of extreme warmth is poorly understood. The present mode of meridional overturning circulation is characterized by deep-water formation in both the North Atlantic and the Southern Ocean. However, a different mode of meridional overturning circulation operated during the extreme greenhouse warmth of the early Cenozoic, during which time the Southern Ocean was the dominant region of deep-water formation. The combination of general global cooling and tectonic evolution of the Atlantic basins over the past ~55 m.y. ultimately led to the development of a mode of overturning circulation characterized by both Southern Ocean and North Atlantic deep-water sources. The change in deep-water circulation mode may, in turn, have affected global climate; however, unraveling the causes and consequences of this transition requires a better understanding of the timing of the transition. New Nd isotope data from the southeastern Atlantic Ocean indicate that the initial transition to a bipolar mode of deep-water circulation occurred in the early Oligocene, ca. 33 Ma. The likely cause of significant deep-water production in the North Atlantic was tectonic deepening of the sill separating the Greenland-Norwegian Sea from the North Atlantic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vertical distribution of total zooplankton biomass and major taxonomic groups are investigated by layers to depths of 2500-3400 m on the basis of three series of net plankton collections. Zooplankton is most abundant above 1500-2000 m. Since true deep-water species do not occur in the Sea of Japan, biomass drops much more sharply at greater depths than it does in the ocean. Since few carnivores inhabit the deep layers, abundant remains of planktonic organisms fall to the bottom, and carnivorous detritovores feeding on these remains are dominant in deep water bottom fauna.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During Cruise 50 of R/V Vityaz ichthyoplankton in surface waters was collected by a neuston otter trawl for many days in four study areas of the Western Tropical Pacific. Obtained results describe quantitative distribution of ichthyoplankton and small fishes in surface waters. The near-surface layer of the ocean (about 30-40 cm thick) can be considered as a special biotope, its population forms an independent biocoenosis - hyponeuston. Species composition of this community (particularly, composition of fish components) in the tropical zone has been studied to some degree, but structure of the biocoenosis as well as biomass and quantitative relationships of species have not been investigated at all. In this paper the authors discuss the method of collecting surface samples that is quite suitable for quantitative calculations and also present the first results obtained using this method, which described quantitative distribution of ichthyoplankton and small fishes in surface waters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glacial/interglacial changes in Southern Ocean's air-sea gas exchange have been considered as important mechanisms contributing to the glacial/interglacial variability in atmospheric CO2. Hence, understanding past variability in Southern Ocean intermediate- to deep-water chemistry and circulation is fundamental to constrain the role of these processes on modulating glacial/interglacial changes in the global carbon cycle. Our study focused on the glacial/interglacial variability in the vertical extent of southwest Pacific Antarctic Intermediate Water (AAIW). We compared carbon and oxygen isotope records from epibenthic foraminifera of sediment cores bathed in modern AAIW and Upper Circumpolar Deep Water (UCDW; 943 - 2066 m water depth) to monitor changes in water mass circulation spanning the past 350,000 years. We propose that pronounced freshwater input by melting sea ice into the glacial AAIW significantly hampered the downward expansion of southwest Pacific AAIW, consistent with climate model results for the Last Glacial Maximum. This process led to a pronounced upward displacement of the AAIW-UCDW interface during colder climate conditions and therefore to an expansion of the glacial carbon pool.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Benthic foraminiferal data from Ocean Drilling Program Site 1098 indicate significant changes in deep-water conditions of the Palmer Deep, western Antarctic Peninsula margin, throughout the Holocene (13 ka to present). The earliest Holocene represents a period of transition from the Last Glacial Maximum (LGM). Cold bottom waters, similar to saline shelf water (SSW), dominated the middle Holocene. The late Holocene in the Palmer Deep has been characterized by alternating dominance of circumpolar deep water (CDW) and saline shelf water. These changes have global oceanographic and climatic implications. We suggest that the middle Holocene bottom-water record, in the absence of circumpolar deep water on the western Antarctic Peninsula shelf, indicates high saline shelf water production and/or weakened circumpolar deep water production during the middle Holocene climatic optimum. The late Holocene benthic foraminiferal record indicates rapidly fluctuating sea-ice conditions and may indicate a teleconnection between the South Pacific and Southern Ocean, thus having implications related to the Southern Oscillation Index.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The large-diameter piston core LL44-GPC3 from the central North Pacific Ocean records continuous sedimentation of eolian dust since the Late Cretaceous. Two intervals resolved by Nd and Pb isotopic data relate to dust coming from America (prior to ~40 Ma) and dust coming from Asia (since ~40 Ma). The Intertropical Convergence Zone (ITCZ) separates these depositional regimes today and may have been at a paleolatitude of ~23°N prior to 40 Ma. Such a northerly location of the ITCZ is consistent with sluggish atmospheric circulation and warm climate for the Northern Hemisphere of the early to middle Eocene. Since ~40 Ma, correlations between Nd (~7.55 > epsilon-Nd(t) > ~10.81) and Pb (18.625 < 206/4Pb < 18.879; 15.624 < 207/4Pb < 15.666; 38.611 < 208/4Pb < 38.960; 0.8294 < 207/6Pb < 0.8389; 2.0539 < 208/6Pb < 2.0743) isotopes reflect the progressive drying of central Asia triggered by the westward retreat of the paleo-Tethys. Comparisons between the changes with time in the isotopically well-defined dust flux and Nd and Pb isotopic compositions of Pacific deep water allow one to draw two major conclusions: (1) dust-bound Nd became a resolvable contribution to Pacific seawater only after the one order of magnitude increase in dust flux starting at ~3.5 Ma. Therefore eolian Nd was unimportant for Pacific seawater Nd prior to 3.5 Ma. (2) The lack of a response of Pacific deep water Pb to this huge flux increase suggests that dust-bound Pb has never been important. Instead, mobile Pb associated with island arc volcanic exhalatives probably consists of a significant contribution to Pacific deep water Pb and possibly to seawater elsewhere far away from landmasses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a 3 year record of deep water particle flux at the recently initiated ESTOC (European Station for Time-series in the Ocean, Canary Islands) located in the eastern subtropical North Atlantic gyre. Particle flux was highly seasonal, with flux maxima occurring in late winter-early spring. A comparison with historic CZCS (Coastal Zone Colour Scanner) data shows that these flux maxima occurred about 1 month after maximum chlorophyll was observed in surface waters in a presumed primary source region 100 km * 100 km northeast of the trap location. The main components of the particles collected with the traps were mineral particles and carbonate, both correlating strongly with organic matter sedimentation. Mineral particles in the sinking matter are indicative of the high aeolian input from the African desert regions. Comparing particle fluxes at 1 km and 3 km depth, we find that particle sedimentation increased substantially with depth. Yearly organic carbon sedimentation was 0.6 g m**-2 at 1 km depth compared with 0.8 g m**-2 at 3 km. We hypothesize that higher phytoplankton biomass observed further north could be a source of laterally advecting particles that interact with fast sinking particles originating from the primary source region. This hypothesis is also supported by the differences in size distribution of lithogenic matter found at the two trap depths.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dependence of magnetic susceptibility of bottom sediments from the Caspian Sea on composition of magnetoactive minerals contained in the heavy subfraction of fine-grained sand (0.125-0.100 mm grain size fraction) was established. Changes in the curve shape and magnetic susceptibility values reflect a pulsating pattern of input of different (in magnetic properties) magmatic and metamorphic clastic minerals into sediments, as well as different intensities of formation of authigenic magnetoactive iron sulfides under conditions of multiple alternation of transgressive and regressive phases in marine basins. Values of magnetic susceptibility and shapes of magnetic susceptibility curves for studied sedimentary sequences show that sediments in the South and Middle Caspian Basins are characterized by different specific features.