668 resultados para age type of added specimens
Resumo:
High resolution benthic oxygen isotope records combined with radiocarbon datings, from cores retrieved in the North, Equatorial, and South Atlantic are used to establish a reliable cronostratigraphy for the last 60 ky. This common temporal framework enables us to study the timing of the sub-Milankovitch climate variability in the entire surface Atlantic during this period, as reflected in planktonic oxygen isotope records. Variations in sea surface temperatures in the Equatorial and South Atlantic reveal two warm periods during the mid-stage 3 which are correlated to the warming observed in the North Atlantic after Heinrich events (HL) 5 and 4. However, the records show that the warming started about 1500 y earlier in the South Atlantic. A zonally averaged ocean circulation model simulates a similar north-south thermal antiphasing between the latitudes of our coring sites, when pertubated by a freshwater flux anomaly. We infer that the observed phase relationship between the northern and the southern Atlantic is related to periods of reduced NADW production in the North Atlantic, such as during HL5 and HL4.
Resumo:
Non-glaciated Arctic lowlands in north-east Siberia were subjected to extensive landscape and environmental changes during the Late Quaternary. Coastal cliffs along the Arctic shelf seas expose terrestrial archives containing numerous palaeoenvironmental indicators (e.g., pollen, plant macro-fossils and mammal fossils) preserved in the permafrost. The presented sedimentological (grain size, magnetic susceptibility and biogeochemical parameters), cryolithological, geochronological (radiocarbon, accelerator mass spectrometry and infrared-stimulated luminescence), heavy mineral and palaeoecological records from Cape Mamontov Klyk record the environmental dynamics of an Arctic shelf lowland east of the Taymyr Peninsula, and thus, near the eastern edge of the Eurasian ice sheet, over the last 60 Ky. This region is also considered to be the westernmost part of Beringia, the non-glaciated landmass that lay between the Eurasian and the Laurentian ice caps during the Late Pleistocene. Several units and subunits of sand deposits, peat-sand alternations, ice-rich palaeocryosol sequences (Ice Complex) and peaty fillings of thermokarst depressions and valleys were presented. The recorded proxy data sets reflect cold stadial climate conditions between 60 and 50 Kya, moderate inderstadial conditions between 50 and 25 Kya and cold stadial conditions from 25 to 15 Kya. The Late Pleistocene to Holocene transition, including the Allerød warm period, the early to middle Holocene thermal optimum and the late Holocene cooling, are also recorded. Three phases of landscape dynamic (fluvial/alluvial, irregular slope run-off and thermokarst) were presented in a schematic model, and were subsequently correlated with the supraregional environmental history between the Early Weichselian and the Holocene.
Resumo:
A close look at the sedimentology of Heinrich event 4 from the northwest Labrador Sea indicates that an extended ice margin, perhaps greater than before Heinrich events 1 or 2 (H-1 and H-2), existed in the Hudson Strait region pre-Heinrich event 4 (H-4) and, that on the basis of characteristics of the sediment unit, Heinrich event-4 was different than Heinrich events 1 or 2 (i.e., larger ice sheet collapse(?), longer duration(?), "dirtier" icebergs(?)). Other data from across the southern and eastern margin of the Laurentide Ice Sheet, as well as Greenland and the North Atlantic, support this interpretation, possibly indicating a relative mid-Wisconsin glacial maximum pre-Heinrich event 4. Many of these data also indicate that Heinrich event 4 (35 ka) resulted in serious climatic and oceanographic reorganizations. We suggest that Heinrich event 4 gutted the Hudson Strait, leaving it devoid of ice for Heinrich event 3. We further hypothesize that Heinrich event 3 did not originate from axial ice transport along the Hudson Strait; thus Heinrich event 3 may be more analogous to the proposed northward advancing ice from Ungava Bay during Heinrich event 0 than to the more typical down-the-strait flow during H-1, H-2, and H-4. Consequently, the climatic and oceanographic impacts resulting from Heinrich events are highly susceptible to the type, origin, and magnitude of ice sheet collapse, something which varied per Heinrich event during the last glacial period.