782 resultados para Oxygen partial pressure
Resumo:
Risk analyses indicate that more than 90% of the world's reefs will be threatened by climate change and local anthropogenic impacts by the year 2030 under "business-as-usual" climate scenarios. Increasing temperatures and solar radiation cause coral bleaching that has resulted in extensive coral mortality. Increasing carbon dioxide reduces seawater pH, slows coral growth, and may cause loss of reef structure. Management strategies include establishment of marine protected areas with environmental conditions that promote reef resiliency. However, few resilient reefs have been identified, and resiliency factors are poorly defined. Here we characterize the first natural, non-reef coral refuge from thermal stress and ocean acidification and identify resiliency factors for mangrove-coral habitats. We measured diurnal and seasonal variations in temperature, salinity, photosynthetically active radiation (PAR), and seawater chemistry; characterized substrate parameters; and examined water circulation patterns in mangrove communities where scleractinian corals are growing attached to and under mangrove prop roots in Hurricane Hole, St. John, US Virgin Islands. Additionally, we inventoried the coral species and quantified incidences of coral bleaching, mortality, and recovery for two major reef-building corals, Colpophyllia natans and Diploria labyrinthiformis, growing in mangrove-shaded and exposed (unshaded) areas. Over 30 species of scleractinian corals were growing in association with mangroves. Corals were thriving in low-light (more than 70% attenuation of incident PAR) from mangrove shading and at higher temperatures than nearby reef tract corals. A higher percentage of C. natans colonies were living shaded by mangroves, and no shaded colonies were bleached. Fewer D. labyrinthiformis colonies were shaded by mangroves, however more unshaded colonies were bleached. A combination of substrate and habitat heterogeneity, proximity of different habitat types, hydrographic conditions, and biological influences on seawater chemistry generate chemical conditions that buffer against ocean acidification. This previously undocumented refuge for corals provides evidence for adaptation of coastal organisms and ecosystem transition due to recent climate change. Identifying and protecting other natural, non-reef coral refuges is critical for sustaining corals and other reef species into the future.
Resumo:
Changing global climate due to anthropogenic emissions of CO2 are driving rapid changes in the physical and chemical environment of the oceans via warming, deoxygenation, and acidification. These changes may threaten the persistence of species and populations across a range of latitudes and depths, including species that support diverse biological communities that in turn provide ecological stability and support commercial interests. Worldwide, but particularly in the North Atlantic and deep Gulf of Mexico, Lophelia pertusa forms expansive reefs that support biological communities whose diversity rivals that of tropical coral reefs. In this study, L. pertusa colonies were collected from the Viosca Knoll region in the Gulf of Mexico (390 to 450 m depth), genotyped using microsatellite markers, and exposed to a series of treatments testing survivorship responses to acidification, warming, and deoxygenation. All coral nubbins survived the acidification scenarios tested, between pH of 7.67 and 7.90 and aragonite saturation states of 0.92 and 1.47. However, calcification generally declined with respect to pH, though a disparate response was evident where select individuals net calcified and others exhibited net dissolution near a saturation state of 1. Warming and deoxygenation both had negative effects on survivorship, with up to 100% mortality observed at temperatures above 14ºC and oxygen concentrations of approximately 1.5 ml·l-1. These results suggest that, over the short-term, climate change and OA may negatively impact L. pertusa in the Gulf of Mexico, though the potential for acclimation and the effects of genetic background should be considered in future research.