871 resultados para Holes(Openings)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data on analyses of chemical composition of DSDP samples of bottom sediments and rocks carried out in P.P. Shirshov Institute of Oceanology are reported. Basal sediments and sedimentary rocks prevail in the sample set.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tholeiitic basalts were obtained from basaltic basement ranging in age from 6 to 17 m.y. on IPOD/DSDP Leg 63. The main rock types encountered at all sites but 473 are basaltic pillow lavas. Although many of these pillow basalts are highly or moderately altered, fresh glass is usually present. At Site 473, we recovered coarse-grained, massive basalts; no clearly defined pillowed forms were observed. Phenocrysts or microphenocrysts present in the Leg 63 basalts are Plagioclase and clinopyroxene at Site 469; olivine, Plagioclase, and spinel at Site 470; and olivine, Plagioclase, and clinopyroxene at Sites 472 and 473. Olivines of the basalts from Holes 470A and 472 (Fo85-88) are generally more magnesian than those of the Hole 473 basalts (Fo77-81). Also, plagioclases of Holes 470A and 472 basalts (An70-85) are generally more calcic than those of Holes 469 and 473 basalts (An66-72). Geochemical study of the Leg 63 basalts indicates that in all cases they are large-ion-lithophile (LIL) element depleted tholeiites like typical abyssal tholeiites. In particular, they are very similar in composition to those described from the eastern Pacific, although the degree of iron enrichment found in the Leg 63 basalts is not as extensive as in basalts from the Galapagos spreading center. Hence, the geochemical evidence of the Leg 63 basalts is compatible with their formation at a spreading center. Compositional variations in Leg 63 basalts from any single drill hole is small. Major and trace element data indicate that the samples from Holes 469 and 473 are more fractionated in chemical composition than are the samples from Holes 470A and 472; this compositional variation may be largely ascribed to differences in the extent of shallow-level fractional crystallization of similar parental magma. The Hole 472 samples, however, show a LIL element character distinct from the other Leg 63 samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During Leg 198, the Cretaceous/Paleocene (K/P) boundary was recovered in a remarkable set of cores in nine separate holes at Sites 1209, 1210, 1211, and 1212 on the Southern High of Shatsky Rise. The boundary succession includes an uppermost Maastrichtian white to very pale orange, slightly indurated nannofossil ooze overlain by lowermost Paleocene grayish orange foraminiferal ooze. The boundary between the uppermost Maastrichtian and the lowermost Paleocene is clearly bioturbated. The contact surface is irregular, and pale orange burrows extend 10 cm into the white Maastrichtian ooze. Preliminary investigations conducted on board revealed that the deepest sections of these burrows yielded highly abundant, minute planktonic foraminiferal assemblages dominated by Guembelitria with rare Hedbergella holmdelensis and Hedbergella monmouthensis, possibly attributable to the lowermost Paleocene Zone P0. The substantial thickness of the uppermost Maastrichtian Micula prinsii (CC26) nannofossil Zone and the lowermost Danian Parvularugoglobigerina eugubina (Palpha) foraminiferal Zone suggested that the K/P boundary was rather expanded compared to the majority of deep-sea sites (see Bralower, Premoli Silva, Malone, et al., 2002, doi:10.2973/odp.proc.ir.198.2002). This data report concerns the planktonic foraminiferal biostratigraphy across the K/P boundary in Hole 1209C, the shallowest site (2387 m water depth), and in Hole 1211C, the deepest site (2907 m water depth), where the foraminiferal record across the boundary appeared to be best preserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous fresh ash layers comprise about 0.3% by volume of Neogene to Holocene sediments drilled at Leg 104 Sites 642 and 643 (Vøring Plateau, North Atlantic). Median grain sizes of the ashes are about 100 /µm and maximum grain sizes range up to 1200 µm. Rhyolitic pumice shards dominate, with minor bubble wall shards. Basaltic shards are poorly vesicular and blocky or round. Phenocrystic plagioclase, zircon, and clinopyroxene occur in the rhyolitic, plagioclase, and clinopyroxene phenocrysts and basaltic lithics in the basaltic tephra. Quartz, amphibole, clinozoisite, and rutile are interpreted as xenocrysts. All ash layers are well-sorted and represent distal fallout from major explosive eruptions. Most ashes are rhyolitic (high-K and low-K) in composition, some are bimodal (tholeiitic and rhyolitic). Early Miocene tephra is dominantly basaltic. Iceland is inferred to be the likely source region for most ashes. Late Miocene high-K rhyolites may have originated from the K-rich Jan Mayen magmatic province. One Quaternary layer with biotite and alkali feldspar phenocrysts may have been derived from Jan Mayen Island. Four individual Pliocene to Holocene ash layers from Sites 642 and 643 can be correlated fairly well. Upper Miocene layers are tentatively correlated as a sequence between Sites 642 and 643. Average calculated layer frequencies are about three layers/m.y. through the Pliocene and Pleistocene and five to eight layers per m.y. through the middle and late Miocene, suggesting rather continuous volcanic activity in the North Atlantic. Episodic magmatic activity during Neogene epochs in this part of the North Atlantic, as postulated in the literature, cannot be confirmed.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During Leg 41 Neogene sediments were recovered from five sites off northwest Africa. On the Sierra Leone Rise (Site 366), Neogene sediments consist of nanno oozes, nanno chalk, and calcareous clays 230 meters thick, resting conformably on the late Oligocene sediments. The common succession of zones occurs with two hiatuses. The lower gap corresponds to an interval around the lower/middle Miocene boundary (the Praeorbulina glomerosa and Orbulina suturalis-Globorotalia peri-pheroronda zones are absent) and the upper gap coincides with an interval around the middle/upper Miocene boundary (the Sphaeroidinellopsis sub-dehiscens-GIobigerina druryi, Globigerina nepenthes-Globorotalia siakensis and Globorotalia conlinuosa zones are missing). In the Cape Verde Basin (Site 367) deep-water Neogene turbidites (about 200-250 m thick) contain poor fauna of redeposited and sorted Cretaceous, Eocene, Oligocene, and Neogene species. On the Cape Verde Rise (Site 368) the Neogene section starts with slightly calcareous and non-calcareous clays with poor planktonic foraminifers of the lower Miocene. Later on this area was uplifted and clayey sediments have been replaced upsection in order by more shallow-water clayey nanno and nanno-foraminifer oozes and marls and pure calcareous oozes. In the middle Miocene, planktonic foraminifers are still not diverse, but since the level of the Globigerina nepenthes-Globorotalia siakensis Zone, almost all Neogene zones have been traced. The minimum thickness of the Neogene sediments is about 230 meters. On the continental slope off Spanish Sahara (Site 369) monotonous calcareous pelagic sediments of Neogene age (164 m thick) overlie the late Oligocene comformably, or with a small time gap. A set of zones beginning from the Globigerinoides primordis-Globorotaiia kugleri Zone up to the Globorotalia fohsi fohsi Zone has been revealed with a gap corresponding to the Globigerinita stainforthi and the Globigerinatella insueta-Globigerinoides irilobus zones. Above that follow sediments with heterogeneous microfauna which result from redeposition or mixing of sediments during drilling. The section ends with sediments of the late Miocene and lower Pliocene with abundant planktonic foraminifers. The latter are unconformably overlain by the Quaternary ooze. In the Morocco basin (Site 370) deep-water marls and calcareous clays of the lower Miocene contain poor assemblages of planktonic foraminifers. The middle and upper Miocene are represented by turbidites (alternation of nanno oozes, clays, siltstones, and sands) with heterogeneous microfauna. Total thickness of Neogene is up to 200 meters. In general the Neogene foraminifer microfauna of the area studied includes the majority of species which developed within the tropical-subtropical belt. The entire succession of the Miocene and Pliocene foraminifer zones occurs. The only exclusion is the Sphaeroidinellopsis subdehiscens-Globigerina druryi Zone of the middle Miocene. The distribution of species is shown on three tables. Comments are given for 47 species and subspecies of foraminifers (stratigraphic ranges, peculiarities of morphology, and ultrastructure of the shell wall).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of seawater with basalts in DSDP Hole 501 and the upper part of Hole 504B (Costa Rica Rift) produced oxidative alteration and a zonation of clay minerals along cracks. From rock edges to interiors in many cracks the following succession occurs, based on microscopic observations and microprobe analysis: iron hydroxides (red), "protoceladonite" (green), iddingsite (orange), and saponite (yellow). Clay minerals replace olivines and fill vesicles and cracks. Other secondary minerals are phillipsite, aragonite, and unidentified carbonates. Some glass is transformed to Mg-rich palagonite. Bulk rock chemistry is related to the composition of the secondary minerals. The zonation can be interpreted as a succession of postburial nonoxidative and oxidative diagenesis similar to that described in the Leg 34 basalts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compositions of 45 natural basalt glasses from nine dredge stations and six Deep Sea Drilling Project Leg 54 sites near 9°N on the East Pacific Rise have been determined by electron microprobe. These comprise 19 distinct chemical groups. Seventeen of these fall in the range of the eastern Pacific tholeiite suite, which is characterized by marked enrichment in FeO*, TiO2, K2O, and P2O5 as CaO, MgO, and Al2O3 all decrease. Based on trace elements, an estimated 50-75 per cent fractionation of plagioclase, clinopyroxene, and olivine is required to produce ferrobasalts from parental olivine tholeiites. Additional chemical variations occur which require source heterogeneities, differences in the degree of melting, different courses of shallow fractionation, or magma mixing to explain. Glass compositions from within the Siqueiros fracture zone are mostly less fractionated than those from the flanks of the Rise, and show chemical differences which require variations in the depth of melting or highpressure fractionation to explain. Some of them could not be parental to East Pacific Rise flank ferrobasalts. Two remaining glass groups, from dredge hauls atop a ridge and a seamount, respectively, have distinctly higher K2O, P2O5, and TiO2 as well as lower CaO/Al2O3 and SiO2 at corresponding values of MgO than the tholeiite suite. These abundances, and whole-rock Y/Zr, Ce/Y, Nb/Zr, and isotopic abundances indicate that these basalts had a deeper, less depleted mantle source than the Rise tholeiite suite. Trace element abundances preclude the "ridge" basalt type from being a hybrid between the "seamount" basalt type and any East Pacific Rise tholeiite so far analyzed. The East Pacific Rise glasses from 9°N compare very closely to glasses dredged and drilled elsewhere on the East Pacific Rise. However, glass compositions from Site 424 on the Galapagos Rift drilled during Leg 54, as well as glasses and basalts dredged from the Galapagos and Costa Rica rifts, indicate that a greater degree of melting prevailed along much of the Galapagos Spreading Center than anywhere along the East Pacific Rise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sponge spicules found in Eocene, Oligocene, and middle Miocene sediments at DSDP Leg 71 Sites 511,512, and 513 belong to two classes; Hyalospongiae and Demospongiae. On the basis of spicule types and stratigraphic characteristics, spicule assemblages are distinguished for the lower and upper units of the middle Eocene, the upper Eocene, the lower Oligocene, the lower and upper units of the upper Oligocene, and the middle Miocene. In addition, 23 types and 76 dimensional varieties of spicules are described.