785 resultados para Drags (Hydrography)
Resumo:
Stable isotope records of coexisting benthic foraminifers Uvigerina spp. and Cibicidoides spp. and planktonic G. ruber (white variety) from Site 724 are used to study the late Pleistocene evolution of surface and intermediate water hydrography (593 m water depth) at the Oman Margin. Glacial-interglacial d18O amplitudes recorded by the benthic foraminifers are reduced when compared to the estimated mean ocean changes of d18Oseawater . Epibenthic d13C remains at its modern level or is increased during glacial times. This implies that Red Sea outflow waters which are enriched in d18Oseawater and d13C (Sum CO2) have been replaced during glacial periods by intermediate waters still positive in d13C (Sum CO2) but more negative in d18Oseawater. Glacial-interglacial amplitudes of the planktonic d18O record exceed those of the mean ocean d18Oseawater variation and imply decreased surface water temperatures (SST) during glacial times. Throughout most of the records these cooling events correlate with enhanced rates of carbon accumulation. However, both negative (colder) SST and positive Corg accumulation rate anomalies do not correlate with potential physical upwelling maxima as inferred from the orbital monsoon index. This is in conflict with the established hypothesis that upwelling in the estern Arabia Sea should be strongest during maxima of the southwest monsoon.
Resumo:
The table includes hydrography (salinity, temperature, density, oxygen concentrations) and nutrient (nitrate, nitrite, ammonium, phosphate) measurements from surface waters (upper 200 m) across a 14 °N transect of the Tropical North Atlantic.
Resumo:
Shell chemistry of planktic foraminifera and the alkenone unsaturation index in 69 surface sediment samples in the tropical eastern Indian Ocean off West and South Indonesia were studied. Results were compared to modern hydrographic data in order to assess how modern environmental conditions are preserved in sedimentary record, and to determine the best possible proxies to reconstruct seasonality, thermal gradient and upper water column characteristics in this part of the world ocean. Our results imply that alkenone-derived temperatures record annual mean temperatures in the study area. However, this finding might be an artifact due to the temperature limitation of this proxy above 28°C. Combined study of shell stable oxygen isotope and Mg/Ca ratio of planktic foraminifera suggests that Globigerinoides ruber sensu stricto (s.s.), G. ruber sensu lato (s.l.), and G. sacculifer calcify within the mixed-layer between 20 m and 50 m, whereas Globigerina bulloides records mixed-layer conditions at ~50 m depth during boreal summer. Mean calcifications of Pulleniatina obliquiloculata, Neogloboquadrina dutertrei, and Globorotalia tumida occur at the top of the thermocline during boreal summer, at ~75 m, 75-100 m, and 100 m, respectively. Shell Mg/Ca ratios of all species show a significant correlation with temperature at their apparent calcification depths and validate the application of previously published temperature calibrations, except for G. tumida that requires a regional Mg/Ca-temperature calibration (Mg/Ca = 0.41 exp (0.068*T)). We show that the difference in Mg/Ca-temperatures of the mixed-layer species and the thermocline species, particularly between G. ruber s.s. (or s.l.) and P. obliquiloculata, can be applied to track changes in the upper water column stratification. Our results provide critical tools for reconstructing past changes in the hydrography of the study area and their relation to monsoon, El Niño-Southern Oscillation, and the Indian Ocean Dipole Mode.