663 resultados para DIATOMS
Resumo:
Flux of siliceous plankton and taxonomic composition of diatom and silicoflagellate assemblages were determined from sediment trap samples collected in coastal upwelling-influenced waters off northern Chile (30°S, CH site) under "normal" or non-El Niño (1993-94) and El Niño conditions (1997-98). In addition, concentration of biogenic opal and siliceous plankton, and diatom and silicoflagellate assemblages preserved in surface sediments are provided for a wide area between 27° and 43°S off Chile. Regardless of the year, winter upwelling determines the maximum production pattern of siliceous microorganisms, with diatoms numerically dominating the biogenic opal flux. During the El Niño year the export is markedly lower: on an annual basis, total mass flux diminished by 60%, and diatom and silicoflagellate export by 75%. Major components of the diatom flora maintain much of their regular seasonal cycle of flux maxima and minima during both sampling periods. Neritic resting spores (RS) of Chaetoceros dominate the diatom flux, mirroring the influence of coastal-upwelled waters at the CH trap site. Occurrence of pelagic diatoms species Fragilariopsis doliolus, members of the Rhizosoleniaceae, Azpeitia spp. and Nitzschia interruptestriata, secondary components of the assemblage, reflects the intermingling of warmer waters of the Subtropical Gyre. Dictyocha messanensis dominates the silicoflagellate association almost year-around, but Distephanus pulchra delivers ca. 60% of its annual production in less than three weeks during the winter peak. The siliceous thanatocoenosis is largely dominated by diatoms, whose assemblage shows significant qualitative and quantitative variations from north to south. Between 27° and 35°S, the dominance of RS Chaetoceros, Thalassionema nitzschioides var. nitzschioides and Skeletonema costatum reflects strong export production associated with occurrence of coastal upwelling. Both highest biogenic opal content and diatom concentration at 35° and 41°-43°S coincide with highest pigment concentrations along the Chilean coast. Predominance of the diatom species Thalassiosira pacifica and T. poro-irregulata, and higher relative contribution of the silicoflagellate Distephanus speculum at 41°-43°S suggest the influence of more nutrient-rich waters and low sea surface temperatures, probably associated with the Antarctic Circumpolar Water.
Resumo:
Through scanning electron microscope analysis of sediment microfabric, we have evaluated variations in high-resolution shipboard physical properties (index properties and shear strength), sediment components (smear slide determinations), and shore-based calcium carbonate and biogenic silica data from Site 751 (Kerguelen Plateau). The stratigraphic section at this site records a change in biogenic ooze composition from predominantly calcareous (nannofossil) to siliceous (diatom) ooze from ~23 Ma to the present, reflecting expansion of Antarctic water masses during the late Neogene. The profound change in physical properties and sediment character at 40.1 mbsf (~5-6 Ma) evidently records the northward movement of the Polar Front and a change in absolute accumulation rates of sediment at this site. Trends in geotechnical properties with depth at Site 751 allowed us to subdivide the sedimentary column into a number of geotechnical units that reflect changes in depositional and postdepositional processes with time. Geotechnical properties are sensitive to changing sedimentary inputs of primarily siliceous and calcareous microfossils. This allows us to study the physical nature of biostratigraphically-identified hiatuses and variations in environmental conditions linked to the migration of the Polar Front across this region. The analysis of geotechnical properties permits a more detailed division of the sedimentary column than is possible from shipboard lithologic descriptions alone. Our study of the sedimentary microfabric indicates that randomly oriented, elongate pennate diatom valves compose the sediments with highest porosity and water content values, and the lowest density values (wet bulk, dry bulk, and grain density). Conversely, sediments composed of nannofossils and disassociated nannofossil crystallites and little or no siliceous remains have the lowest porosity and water content values, and the highest density values. Samples of mixed siliceous/calcareous composition have intermediate physical property values, but these vary according to the nature of the sedimentary matrix and the state of preservation of individual skeletal elements.
Resumo:
In the Arctic, under-ice primary production is limited to summer months and is not only restricted by ice thickness and snow cover but also by the stratification of the water column, which constrains nutrient supply for algal growth. RV Polarstern visited the ice-covered Eastern Central basins between 82 to 89°N and 30 to 130°E in summer 2012 when Arctic sea ice declined to a record minimum. During this cruise, we observed a widespread deposition of ice algal biomass of on average 9 g C per m**2 to the deep-sea floor of the Central Arctic basins. Data from this cruise will contribute to assessing the impact of current climate change on Arctic productivity, biodiversity, and ecological function.