587 resultados para Abundance, standard deviation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ne, Ar, Kr, Xe, and K2O were measured in representative samples of holocrystalline basalt from DSDP Hole 504B. No hiatus in inert gas abundance is recognized at the base of the "oxic" alteration zone and the extent rather than the nature of alteration appears to determine these abundances. When the inert gas abundances are separately plotted against K2O, two distinct trends of loss emerge, one for alteration involving K-gain, the other for K-loss. Apparent whole-rock K-Ar ages are anomalous in the upper 50 m of basement, and below 300 m sub-basement. In the intervening zone of basement, celadonization adds sufficient potassium and eliminates enough "primary" 40Ar early in the history of the basalts for "excess" 40Ar to become subordinate to radiogenic 40Ar in basalts showing potassium enrichment greater than 0.2%. Stratigraphically correct K-Ar ages are obtained, therefore, from K-enriched basalts of the oxic alteration zone.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Warm intervals within the Pliocene epoch (5.33-2.58 million years ago) were characterized by global temperatures comparable to those predicted for the end of this century (Haywood and Valdes, doi:10.1016/S0012-821X(03)00685-X) and atmospheric CO2 concentrations similar to today (Seki et al., 2010, doi:10.1016/j.epsl.2010.01.037; Bartoli et al., 2011, doi:10.1029/2010PA002055; Pagani et al., 2010, doi:10.1038/ngeo724). Estimates for global sea level highstands during these times (Miller et al., 2012, doi:10.1130/G32869.1) imply possible retreat of the East Antarctic ice sheet, but ice-proximal evidence from the Antarctic margin is scarce. Here we present new data from Pliocene marine sediments recovered offshore of Adélie Land, East Antarctica, that reveal dynamic behaviour of the East Antarctic ice sheet in the vicinity of the low-lying Wilkes Subglacial Basin during times of past climatic warmth. Sedimentary sequences deposited between 5.3 and 3.3 million years ago indicate increases in Southern Ocean surface water productivity, associated with elevated circum-Antarctic temperatures. The geochemical provenance of detrital material deposited during these warm intervals suggests active erosion of continental bedrock from within the Wilkes Subglacial Basin, an area today buried beneath the East Antarctic ice sheet. We interpret this erosion to be associated with retreat of the ice sheet margin several hundreds of kilometres inland and conclude that the East Antarctic ice sheet was sensitive to climatic warmth during the Pliocene.