605 resultados para 161-977
Resumo:
Multiple layers of sapropels occur widely in the sedimentary record of the Mediterranean Sea and record repetitions of paleoclimatic conditions that favored increased production and preservation of marine organic matter. A combination of hydrogen and carbon isotope analyses of Pleistocene sapropels from the Tyrrhenian Sea reveals new aspects of the factors leading to their deposition. Organic matter dD values that are significantly more negative in sapropels than in adjacent marls indicate a combination of dilution of surface waters by meteoric waters and increased burial of lipid-rich organic matter during periods of sapropel deposition. Organic d13C values in sapropels that are less negative than those in marls suggest periods of markedly elevated marine biological production. The opposite but concordant excursions of these two isotopic parameters imply that the sapropel layers formed from increased export of marine organic matter from the photic zone to the sea floor during periods of greater fluvial delivery of continental nutrients to the Mediterranean Sea. Furthermore, the isotopic evidence indicates that periods of wetter climate were widespread in southern Europe at the same times as in northern Africa.
Resumo:
A key feature of Greece is the large amount of historical and archaeological records. The sedimentary record of the Etoliko Lagoon, Aetolia, Western Greece, offers an ideal opportunity to study human-environment interaction and to disentangle natural and anthropogenic imprints in the sedimentary record. By applying an interdisciplinary approach of combining geoscientific methods (XRF, LOI, grain size analysis) with archaeological and historical records, the 8.8 m long sedimentary sequence ETO1C reveals the palaeoenvironmental history of the lagoon and its catchment since 11,670 cal BP. With a thorough chronology based on 14C age-depth-modelling including varve counting, different evolutionary stages were put in a chronological context. These stages include a lake period (11,670-8310 cal BP) followed by a period of sporadic saltwater intrusion (8310-1350 cal BP) as a result of continuing transgression. Phases of limnic predominance associated with freshwater inflow of episodically activated distributaries (around 5230 cal BP) still occurred. By 1350 cal BP, ongoing sea level rise had connected the lagoons of Etoliko and Messolonghi and freshwater influence had ceased. With the onset of settlement activity in the Late Helladic (1700-1100 cal BC) humans took advantage of the prevailing environmental landscape. A sudden increase in coarse sedimentation correlates with the history of human occupation with its peak of prosperity from the Late Helladic until the end of the Hellenistic Period (30 cal BC).
Resumo:
The TEX86H temperature proxy is a relatively new proxy based on crenarchaeotal lipids and has rarely been applied together with other temperature proxies. In this study, we applied the TEX86H on a sediment core from the Alboran Sea (western Mediterranean, core ODP-977A) covering the penultimate climate cycle, that is, from 244 to 130 ka, and compared this with previously published sea surface temperatures derived from the Uk'37 of alkenones of haptophyta and Mg/Ca records of planktonic foraminifera. The TEX86H temperature record shows remarkably similar stadial-interstadial patterns and abrupt temperature changes to those observed with the Uk'37 palaeothermometer. Absolute TEX86H temperature estimates are generally higher than those of Uk'37, though this difference (<3°C in 81% of the data points) is mainly within the temperature calibration error for both proxies, suggesting that crenarchaeota and haptophyta experienced similar temperature variations. During occasional events (<5% of the analyzed time span), however, the TEX86H exhibits considerably higher absolute temperature estimates than the Uk'37. Comparison with Mg/Ca records of planktonic foraminifera as well as other Mediterranean TEX86 and Uk'37 records suggests that part of this divergence may be attributed to seasonal differences, that is, with TEX86H reflecting mainly the warm summer season while Uk'37 would show annual mean. Biases in the global calibration of both proxies or specific biases in the Mediterranean are an alternative, though less likely, explanation. Despite differences between absolute TEX86H and Uk'37 temperatures, the correlation between the two proxies (r**2 = 0.59, 95% significance) provides support for the occurrence of abrupt temperature variations in the western Mediterranean during the penultimate interglacial-to-glacial cycle.