621 resultados para 115-707C


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chronostratigraphy, the calcareous nannofossil biochronology, and the biostratigraphy of the Miocene and Pliocene sediments retrieved during Leg 115 in the equatorial western Indian Ocean are presented and discussed. Most of the zonal boundaries of the standard 1971 zonation of Martini and the 1973 zonation of Bukry are easily recognized in these low-latitude sediments. We also comment on the secondary events that are proposed in the literature to improve the biostratigraphic resolution provided by the standard zonations. The study of calcareous nannofossil biostratigraphy and taphonomy of sequences from the Northern Mascarene Plateau area, which was drilled to investigate the Neogene history of carbonate flux and dissolution, indicate that the accumulation of carbonates in this area results from a complex interplay among carbonate bioproductivity, carbonate removal by chemical dissolution and mechanical erosion, and carbonate addition by mass and current transport. In spite of these drawbacks, major changes and trends in carbonate accumulation can be recognized, most of which, if not all, correlate with major steps in the evolution of the Neogene climatic system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable isotopic and minor element compositions were measured on the fine fraction of pelagic carbonate sediments from Ocean Drilling Program Site 709 in the central Indian Ocean. This section ranges in age from 47 Ma to the present. The observed compositional variations are the result of either paleoceanographic changes (past oceanic chemical or temperature variations) or diagenetic changes. The CaCO3 record is little affected by diagenesis. From previous work, carbonate content is known to be determined by the interplay of biological productivity, water column dissolution, and dilution. The carbon isotopic record is generally similar to previously published curves. A good correlation was observed between sea-level high stands and high 13C/12C ratios. This supports Shackleton's hypothesis that as the proportion of organic carbon buried in marine sediments becomes larger, oceanic-dissolved inorganic carbon becomes isotopically heavier. This proportion appears to be higher when sea level is higher and organic carbon is buried in more extensive shallow-shelf sediments. The strontium content and oxygen isotopic composition of carbonate sediments are much more affected by burial diagenesis. Low strontium concentrations are invariably associated with high values of d18O, probably indicating zones of greater carbonate recrystallization. Nevertheless, there is an inverse correlation between strontium concentration and sea level that is thought to be a result of high-strontium aragonitic sedimentation on shallow banks and shelves during high stands. Iron and manganese concentrations and, to a lesser extent, magnesium and strontium concentrations and carbon isotopic ratios are affected by early diagenetic reactions. These reactions are best observed in a slumped interval of sediments that occurs between 13.0 and 17.5 Ma. As a result of microbial reduction of manganese and iron oxides and dissolved sulfate, it is hypothesized that small amounts of mixed-metal carbonate cements are precipitated. These have low carbon isotopic ratios and high concentrations of metals.