795 resultados para amphibole olivine
Resumo:
We performed hydrous partial melting experiments at shallow pressures (0.2 GPa) under slightly oxidizing conditions (NNO oxygen buffer) on oceanic cumulate gabbros drilled by ODP (Ocean Drilling Program) cruises to evaluate whether the partial melting of oceanic gabbro can generate SiO2-rich melts with compositions typical of oceanic plagiogranites. The experimental melts of the low-temperature runs broadly overlap those of natural plagiogranites. At 940 °C, the normalized SiO2 contents of the experimental melts of all systems range between 60 and 61 wt%, and at 900 °C between 63 and 68 wt%. These liquids are characterized by low TiO2 and FeOtot contents, similar to those of natural plagiogranites from the plutonic section of the oceanic crust, but in contrast to Fe and Ti-rich low-temperature experimental melts obtained in MORB systems at ~950 °C. The ~1,500-m-long drilled gabbroic section of ODP Hole 735B (Legs 118 and 176) at the Southwest Indian Ridge contains numerous small plagiogranitic veins often associated with zones which are characterized by high-temperature shearing. The compositions of the experimental melts obtained at low temperatures match those of the natural plagiogranitic veins, while the compositions of the crystals of low-temperature runs correspond to those of minerals from high-temperature microscopic veins occurring in the gabbroic section of the Hole 735B. This suggests that the observed plagiogranitic veins are products of a partial melting process triggered by a water-rich fluid phase. If the temperature estimations for hightemperature shear zones are correct (up to 1,000 °C), and a water-rich fluid phase is present, the formation of plagiogranites by partial melting of gabbros is probably a widespread phenomenon in the genesis of the ocean crust.
Resumo:
The paper reports newly obtained stratigraphic, petrographic, and isotope geochronology data on modern moderately acid lavas from the Keli Highland of the Greater Caucasus and presents a geological map of the territory, in which 35 volcanoes active in Late Quaternary time were documented by the authors. Total duration of volcanic activity at the highland was estimated at 250 ka. Volcanic activity was discrete and occurred in three phases: Middle Neopleistocene (245-170 ka), Late Neopleistocene (135-70 ka), and Late Neopleistocene-Holocene (<30 ka). Newly obtained lines of evidence indicate that certain volcanoes erupted in the latest Neopleistocene-Holocene. The first phase of volcanic activity was connected mainly with lava volcanoes, and eruptions during the later phases of volcanic activity in this part of the Greater Caucasus produced mainly lavas. The most significant eruptions are demonstrated to occur in the territory during the second phase. The major evolutionary trends of volcanic processes during the final phase in the Keli Highland are determined. It was also determined that overwhelming majority of volcanoes that were active less than 30 ka BP are spatially restricted to long-liven local magmatic zones, which were active during either all three or only the final two phases of activity. These parts of the territory are, perhaps, the most hazardous in terms of volcanic activity.
Resumo:
Core and outcrop analysis from Lena mouth deposits have been used to reconstruct the Late Quaternary sedimentation history of the Lena Delta. Sediment properties (heavy mineral composition, grain size characteristics, organic carbon content) and age determinations (14C AMS and IR-OSL) are applied to discriminate the main sedimentary units of the three major geomorphic terraces, which form the delta. The development of the terraces is controlled by complex interactions among the following four factors: (1) Channel migration. According to the distribution of 14C and IR-OSL age determinations of Lena mouth sediments, the major river runoff direction shifted from the west during marine isotope stages 5-3 (third terrace deposits) towards the northwest during marine isotope stage 2 and transition to stage 1 (second terrace), to the northeast and east during the Holocene (first terrace deposits). (2) Eustasy. Sea level rise from Last Glacial lowstand to the modern sea level position, reached at 6-5 ka BP, resulted in back-filling and flooding of the palaeovalleys. (3) Neotectonics. The extension of the Arctic Mid-Ocean Ridge into the Laptev Sea shelf acted as a halfgraben, showing dilatation movements with different subsidence rates. From the continent side, differential neotectonics with uplift and transpression in the Siberian coast ridges are active. Both likely have influenced river behavior by providing sites for preservation, with uplift, in particular, allowing accumulation of deposits in the second terrace in the western sector. The actual delta setting comprises only the eastern sector of the Lena Delta. (4) Peat formation. Polygenetic formation of ice-rich peaty sand (''Ice Complex'') was most extensive (7-11 m in thickness) in the southern part of the delta area between 43 and 14 ka BP (third terrace deposits). In recent times, alluvial peat (5-6 m in thickness) is accumulated on top of the deltaic sequences in the eastern sector (first terrace).
Resumo:
Modal compositions of volcaniclastic sands recovered on Leg 126 of the Ocean Drilling Project (Izu-Bonin island arc and Sumisu Rift) are similar to those from other intraoceanic island arcs and associated marginal basins. These sands are dominantly composed of volcanic-lithic and plagioclase-feldspar grains derived from the Izu-Bonin magmatic arc and intrarift volcanoes. The glass color of volcanic fragments ranges from black (tachylite) to brown to colorless; individual samples usually contain a mixture of glass colors. Two of the forearc sites (792 and 793) are more heterogeneous with respect to glass color than the backarc/Sumisu Rift sites (788, 790, and 791). Site 787 forearc sands are dominantly composed of tachylite grains; their unique composition may be attributed either to winnowing by submarine-canyon currents or to a volcanic island source. There is an increase in the proportions of pumice/colorless glass, felsitic grains, and quartz within sediments of the incipient backarc basin (Sumisu Rift), as compared with the forearc-basin sites.