507 resultados para rock cavy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A morphologically complex igneous basement was penetrated at Leg 125 Site 786 beneath approximately 100 m of Eocene-Pleistocene sediments at 31°52.45 'N, 141°13.59'E in a 3082-m water depth. The site is located on the forearc basement high (FBH) of the Izu-Bonin (Ogasawara) Arc. In the broadest terms, the sequence in Hole 786B consists of a basal sheeted dike complex, heavily mineralized in places, with overlying pillow lavas giving way to a complex and repeated sequence of interlayered volcanic breccias and lava flows with some thin sedimentary intervals. The sequence has been further cut by dikes or sills, particularly of high-Ca and intermediate-Ca boninite, and is locally strongly sheared by faulting. The whole basement has been covered with middle Eocene-early Pleistocene sediments. A monomict breccia forms the shallowest portion of Hole 786B and a polymict breccia having Mn-oxide-rich clast coatings and matrix forms the deepest part of Hole 786A (-100-160 mbsf). The basement is tectonized in some places, and a mineralized stockwork is present in the deepest part of Hole 786B. A wide variety of rock types form this basement, ranging from mafic to silicic in character and including high-, intermediate-, and low-Ca boninites, intermediate- and low-Ca bronzite andesites, andesite, dacite, and rhyolite groups. Intragroup and intergroup relationships are complicated in detail, and several different upper mantle source(s) probably were involved. A significant role for orthopyroxene-clinopyroxene-plagioclase fractionation is indicated in the mafic-intermediate groups, and the most probable complementary cumulates should be noritic gabbros. Many overall similarities but some subtle differences are noted between the igneous basement at Site 786 and the subaerial outcrops of the FBH to the south in the type boninite locality of Chichijima. Both suites were derived by hydrous melting of a relatively shallow, refractory (harzburgitic) upper mantle source. These Bonin forearc basement rocks are similar in many respects to those of Eocene-Oligocene age now forming the forearc of the Marianas at Leg 60 Site 458 and on Guam. In sharp distinction, the geochemistry of the Eocene-Pleistocene ash sequences overlying the Bonin FBH must have been derived from a very different upper mantle source, implying considerable across-strike differences in sub-arc mantle composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submarine groundwater discharge in coastal settings can massively modify the hydraulic and geochemical conditions of the seafloor. Resulting local anomalies in the morphology and physical properties of surface sediments are usually explored with seismo-acoustic imaging techniques. Controlled source electromagnetic imaging offers an innovative dual approach to seep characterization by its ability to detect pore-water electrical conductivity, hence salinity, as well as sediment magnetic susceptibility, hence preservation or diagenetic alteration of iron oxides. The newly developed electromagnetic (EM) profiler Neridis II successfully realized this concept for a first time with a high-resolution survey of freshwater seeps in Eckernförde Bay (SW Baltic Sea). We demonstrate that EM profiling, complemented and validated by acoustic as well as sample-based rock magnetic and geochemical methods, can create a crisp and revealing fingerprint image of freshwater seepage and related reductive alteration of near-surface sediments. Our findings imply that (1) freshwater penetrates the pore space of Holocene mud sediments by both diffuse and focused advection, (2) pockmarks are marked by focused freshwater seepage, underlying sand highs, reduced mud thickness, higher porosity, fining of grain size, and anoxic conditions, (3) depletion of Fe oxides, especially magnetite, is more pervasive within pockmarks due to higher concentrations of organic and sulfidic reaction partners, and (4) freshwater advection reduces sediment magnetic susceptibility by a combination of pore-water injection (dilution) and magnetite reduction (depletion). The conductivity vs. susceptibility biplot resolves subtle lateral litho- and hydrofacies variations.