177 resultados para precipitation hardening
Resumo:
Shallow groundwater aquifers are often influenced by anthropogenic contaminants or increased nutrient levels. In contrast, deeper aquifers hold potentially pristine paleo-waters that are not influenced by modern recharge. They thus represent important water resources, but their recharge history is often unknown. In this study groundwater from two aquifers in southern Germany were analyzed for their hydrogen and oxygen stable isotope compositions. One sampling campaign targeted the upper aquifer that is actively recharged by modern precipitation, whereas the second campaign sampled the confined, deep Benkersandstein aquifer. The groundwater samples from both aquifers were compared to the local meteoric water line to investigate sources and conditions of groundwater recharge. In addition, the deep groundwater was dated by tritium and radiocarbon analyses. Stable and radiogenic isotope data indicate that the deep-aquifer groundwater was not part of the hydrological water cycle in the recent human history. The results show that the groundwater is older than ~20,000 years and most likely originates from isotopically depleted melt waters of the Pleistocene ice age. Today, the use of this aquifer is strictly regulated to preserve the pristine water. Clear identification of such non-renewable paleo-waters by means of isotope geochemistry will help local water authorities to enact and justify measures for conservation of these valuable resources for future generations in the context of a sustainable water management.
Resumo:
The strontium isotope ratios of authigenic carbonates from Indian Ocean sea-floor basalts have been used to determine the timing of carbonate mineral precipitation and fluid flow. The samples include calcites from 57.2 Ma crust from Ocean Drilling Project (ODP) Site 715, and calcites, aragonites, and siderites from 63.7 Ma crust from ODP Site 707. At Site 715, calcite precipitation may have begun at any time after the basalts cooled, and it continued until approximately 31 Ma, or 26 m.y. after basalt eruption. At Site 707, aragonite and siderite did not begin to precipitate until about 36 Ma, almost 30 m.y. after basalt eruption, and continued to precipitate until at least 30 and 28 Ma, respectively. Calcite precipitation began at approximately 32 Ma and continued until 22 Ma. These ages suggest that vein mineral deposition and low-temperature fluid circulation in the ocean crust may continue for much longer periods of time than previously observed.
Resumo:
The first step for the application of stable isotope analyses of ice wedges for the correct paleoclimatic reconstruction supposes the study of the isotopic composition of modern ice wedges and their relationship with the isotopic composition of modern precipitation. The purpose of this research is to present, to analyze and to discuss new data on isotopic composition (d18O, dD, 3H) of modern ice wedges obtained in the Laptev Sea region in 1998-99. Investigations were carried out at two sites: on Bykovsky Peninsula in 1998 and on Bol'shoy Lyakhovsky Island in 1999 and were based on the combined application of both tritium CH) and stable isotope (d18O, dD) analyses. Tritium analyses of the atmospheric precipitation collected during two field seasons show seasonal variations: high tritium concentration in snow (to a maximum of 207 TU) and low values of tritium concentration (<20 TU) in rain. High tritium concentrations are also observed in the surface water, in suprapermafrost ground waters, and in the upper part of permafrost. High tritium concentrations range between 30-40 TU and 750 TU in the studied modern ice wedges (active ice wedges), which let us believe that they are of modern growth. Such high tritium concentrations in ice wedges can not be associated with old thermonuclear tritium because of the radioactive decay. High tritium concentrations found in the snow cover in 1998/99, in the active layer and in the upper part of permafrost give evidence of modern (probably the last decade) technogenic tritium arrival from the atmosphere on to the Earth surface in the region. The comparison of the isotopic composition (d18O, dD and d-excess) of active ice wedges and modern winter precipitation in both sites shows: 1) the isotopic composition of snow correlates linearly with a slope close to 8.0 and parallel to the GMWL at both sites; 2) the mean isotopic composition of active ice wedges on Bykovsky Peninsula is in good agreement with the mean isotopic composition of modern snow; 3) the isotopic composition of active ice wedges and snow on Bol'shoy Lyakhovsky Island are considerably different. There are low values of d-excess in all studied active ice wedges (mean value is about 4.8 per mil), while in snow, the mean value of d-excess is about 9.5 per mil. Possible reasons for this gap are the following: 1) the modification of the isotopic composition in snow during the spring period; 2) changes in the isotopic composition of ice wedges due to the process of ice sublimation in open frost cracks during the cold period; 3) mixing of snowmelt water with different types of surface water during the spring period; 4) different moisture source regions.