74 resultados para polychlorinated biphenyl
Resumo:
Seasonality in biomagnification of persistent organic pollutants (POPs; polychlorinated biphenyls, chlorinated pesticides, and brominated flame retardants) in Arctic marine pelagic food webs was investigated in Kongsfjorden, Svalbard, Norway. Trophic magnification factors (TMFs; average factor change in concentration between two trophic levels) were used to measure food web biomagnification in biota in May, July, and October 2007. Pelagic zooplankton (seven species), fish (five species), and seabirds (two species) were included in the study. For most POP compounds, highest TMFs were found in July and lowest were in May. Seasonally changing TMFs were a result of seasonally changing POP concentrations and the d15N-derived trophic positions of the species included in the food web. These seasonal differences in TMFs were independent of inclusion/exclusion of organisms based on physiology (i.e., warm- versus cold-blooded organisms) in the food web. The higher TMFs in July, when the food web consisted of a higher degree of boreal species, suggest that future warming of the Arctic and increased invasion by boreal species can result in increased food web magnification. Knowledge of the seasonal variation in POP biomagnification is a prerequisite for understanding changes in POP biomagnification caused by climate change.
Resumo:
We assessed the relationship between exposure to organohalogen polluted minke whale (Balaenoptera acutorostrata) blubber and liver morphology and function in a generational controlled study of 28 Greenland sledge dogs (Canis familiaris). The prevalence of portal fibrosis, mild bile duct hyperplasia, and vascular leukocyte infiltrations was significantly higher in the exposed group (all Chi-square: p<0.05). In case of granulomas, the frequency was significantly highest in the bitches (P generation) while the prevalence of portal fibrosis was highest in the F generation (pups) (both Chi-square: p<0.05). No significant difference between exposed and controls was found for bile acid, ALAT, and ALKP, while ASAT and LDH were significantly highest in the control group (both ANOVA: p<0.05). We therefore suggest that a daily intake of 50-200 g environmentally organohalogen polluted minke whale blubber can cause liver lesions in Greenland sledge dogs. It is reasonable to infer that other apex predators such as polar bears (Ursus maritimus) and humans may suffer from similar impacts.
Resumo:
We report on the comparative bioaccumulation, biotransformation and/or biomagnification from East Greenland ringed seal (Pusa hispida) blubber to polar bear (Ursus maritimus) tissues (adipose, liver and brain) of various classes and congeners of persistent chlorinated and brominated contaminants and metabolic by-products: polychlorinated biphenyls (PCBs), chlordanes (CHLs), hydroxyl (OH-) and methylsulfonyl (MeSO2-) PCBs, polybrominated biphenyls (PBBs), OH-PBBs, polybrominated diphenyl ether (PBDE) and hexabromocyclododecane (HBCD) flame retardants and OH- and methoxyl (MeO-) PBDEs, 2,2-dichloro-bis(4-chlorophenyl)ethene (p,p'-DDE), 3-MeSO2-p,p'-DDE, pentachlorophenol (PCP) and 4-OH-heptachlorostyrene (4-OH-HpCS). We detected all of the investigated contaminants in ringed seal blubber with high frequency, the main diet of East Greenland bears, with the exception of OH-PCBs and 4-OH-HpCS, which indicated that these phenolic contaminants were likely of metabolic origin and formed in the bears from accumulated PCBs and octachlorostyrene (OCS), respectively, rather than being bioaccumulated from a seal blubber diet. For all of the detectable sum of classes or individual organohalogens, in general, the ringed seal to polar bear mean BMFs for SumPCBs, p,p'-DDE, SumCHLs, SumMeSO2-PCBs, 3-MeSO2-p,p'-DDE, PCP, SumPBDEs, total-(alpha)-HBCD, SumOH-PBDEs, SumMeO-PBDEs and SumOH-PBBs indicated that these organohalogens bioaccumulate, and in some cases there was tissue-specific biomagnification, e.g., BMFs for bear adipose and liver ranged from 2 to 570. The blood-brain barrier appeared to be effective in minimizing brain accumulation as BMFs were <= 1 in the brain, with the exception of SumOH-PBBs (mean BMF = 93±54). Unlike OH-PCB metabolites, OH-PBDEs in the bear tissues appeared to be mainly accumulated from the seal blubber rather than being metabolic formed from PBDEs in the bears. In vitro PBDE depletion assays using polar bear hepatic microsomes, wherein the rate of oxidative metabolism of PBDE congeners was very slow, supported the probability that accumulation from seals is the main source of OH-PBDEs in the bear tissues. Our findings demonstrated from ringed seal to polar bears that organohalogen biotransformation, bioaccumulation and/or biomagnification varied widely and depended on the contaminant in question. Our results show the increasing complexity of bioaccumulated and in some cases biomagnified, chlorinated and brominated contaminants and/or metabolites from the diet may be a contributing stress factor in the health of East Greenland polar bears.
Resumo:
Thyroid hormones are essential for normal growth and development and disruption of thyroid homeostasis can be critical to young developing individuals. The aim of the present study was to assess plasma concentrations of halogenated organic contaminants (HOCs) in chicks of two seabird species and to investigate possible correlations of HOCs with circulating thyroid hormone (TH) concentrations. Plasma from black-legged kittiwake (Rissa tridactyla) and northern fulmar (Fulmarus glacialis) chicks were sampled in Kongsfjorden, Svalbard in 2006. The samples were analyzed for thyroid hormones and a wide range of HOCs (polychlorinated biphenyls (PCBs), hydroxylated (OH-) and methylsulphoned (MeSO-) PCB metabolites, organochlorine pesticides (OCPs), brominated flame retardants (BFRs), and perfluorinated compounds (PFCs)). Concentrations of HOCs were generally low in kittiwake and fulmar chicks compared to previous reports. HOC concentrations were five times higher in fulmar chicks compared to in kittiwake chicks. PFCs dominated the summed HOCs concentrations in both species (77% in kittiwakes and 69% in fulmars). Positive associations between total thyroxin (TT4) and PFCs (PFHpS, PFOS, PFNA) were found in both species. Although correlations do not implicate causal relationships per se, the correlations are of concern as disruption of TH homeostasis may cause developmental effects in young birds.
Resumo:
Studies on the fate of organohalogen contaminants (OHCs) in wild top predator mammals in the Arctic have often been a challenge due to important knowledge deficiencies in the life history of the sampled animals. The present study investigated the influence of age, dietary and trans-generational factors on the fate of major lipophilic chlorinated and brominated OHCs in adipose tissue of a potential surrogate captive species for the polar bear (Ursus maritimus), the sledge dog (Canis familiaris) in West Greenland. Adult female sledge dogs (P) and their sexually-mature (F1) and/or pre-weaning pups (F1-MLK) were divided into an exposed group (EXP) fed blubber from a Greenland minke whale (Balaenoptera acutorostrata) and a control group (CON) given commercially available pork fat. Large dietary treatment-related differences in summed and individual congener/compound adipose tissue concentrations of polybrominated diphenyl ethers (PBDEs), hexachlorobenzene (HCB), chlordanes (CHLs) and polychlorinated biphenyls (PCBs) were found between the EXP and CON groups for all the sledge dog cohorts. However, among the F1-MLK, F1 and P dogs in both of the EXP and CON groups, little or no difference existed in PBDE, HCB, CHL and PCB concentrations, suggesting higher state of equilibrium in adipose tissue concentrations from a very early stage of life. In contrast, the distribution pattern (proportions to the summed concentrations) of OHC classes, and the major congeners/ compounds constituting those classes, varied on a dietary group- and/or cohort-dependent manner. The present captive sledge dog study demonstrated the importance of the confounding effects of diet composition, mother-pup association (maternal transfer), reproductive status (nursing), and to a lesser extent age in the fate of OHCs in adipose tissue of a large top carnivore mammal.
Resumo:
Differences in bioaccumulation of persistent organic pollutants (POPs) between fjords characterized by different water masses were investigated by comparing POP concentrations, patterns and bioaccumulation factors (BAFs) in seven species of zooplankton from Liefdefjorden (Arctic water mass) and Kongsfjorden (Atlantic water mass), Svalbard, Norway. No difference in concentrations and patterns of POPs was observed in seawater and POM; however higher concentrations and BAFs for certain POPs were found in species of zooplankton from Kongsfjorden. The same species were sampled in both fjords and the differences in concentrations of POPs and BAFs were most likely due to fjord specific characteristics, such as ice cover and timing of snow/glacier melt. These confounding factors make it difficult to conclude on water mass (Arctic vs. Atlantic) specific differences and further to extrapolate these results to possible climate change effects on accumulation of POPs in zooplankton. The present study suggests that zooplankton do biomagnify POPs, which is important for understanding contaminant uptake and flux in zooplankton, though consciousness regarding the method of evaluation is important.