55 resultados para phase resolution lifetime determinations
Resumo:
Higher resolution pore-water samples were recovered at intervals of 0.3 to 3 m from selected cores during Leg 119 in order to identify zones where active geochemical reactions were occurring. In addition to shipboard measurements, solid- and dissolved-phase samples were analyzed at my shore-based laboratory. Solid-phase samples were analyzed for redox conditions, carbon, total metals, and leachable metals. Pore-water samples were analyzed for ammonia, silica, sulfate, and major cations. Data are presented in tables for 400 samples from Site 739 in Prydz Bay, East Antarctica, and Sites 736, 737, 738, 744, 745, and 746 at the Kerguelen Ridge, South Indian Ocean.
Resumo:
An experiment was conceived in which we monitored degradation of GlcDGD. Independent of the fate of the [14C]glucosyl headgroup after hydrolysis from the glycerol backbone, the 14C enters the aqueous or gas phase whereas the intact lipid is insoluble and remains in the sediment phase. Total degradation of GlcDGD then is obtained by combining the increase of radioactivity in the aqueous and gaseous phases. We chose two different sediment to perform this experiment. One is from microbially actie surface sediment sampled in February 2010 from the upper tidal flat of the German Wadden Sea near Wremen (53° 38' 0N, 8° 29' 30E). The other one is deep subsurface sediments recovered from northern Cascadia Margin during Integrated Ocean Drilling Program Expedition 311 [site U1326, 138.2 meters below seafloor (mbsf), in situ temperature 20 °C, water depth 1,828 m. We performed both alive and killed control experiments for comparison. Surface and subsurface sediment slurry were incubated in the dark at in situ temperature, 4 °C and 20 °C for 300 d, respectively. The sterilized slurry was stored at 20 °C. All incubations were carried out under N2 headspace to ensure anaerobic conditions. The sampling frequency was high during the first half-month, i.e., after 1, 2, 7, and 14 d; thereafter, the sediment slurry was sampled every 2 months. At each time point, samples were taken in triplicate for radioactivity measurements. After 300 d of incubation, no significant changes of radioactivity in the aqueous phase were detected. This may be the result of either the rapid turnover of released [14C] glucose or the relatively high limit of detection caused by the slight solubility (equivalent to 2% of initial radioactivity) of GlcDGD in water. Therefore, total degradation of GlcDGD in the dataset was calculated by combining radioactivity of DIC, CH4, and CO2, leading to a minimum estimate.
Resumo:
New values for the astronomical parameters of the Earth's orbit and rotation (eccentricity, obliquity and precession) are proposed for paleoclimatic research related to the Late Miocene, the Pliocene and the Quaternary. They have been obtained from a numerical solution of the Lagrangian system of the planetary point masses and from an analytical solution of the Poisson equations of the Earth-Moon system. The analytical expansion developed in this paper allows the direct determination of the main frequencies with their phase and amplitude. Numerical and analytical comparisons with the former astronomical solution BER78 are performed so that the accuracy and the interval of time over which the new solution is valid can be estimated. The corresponding insolation values have also been computed and compared to the former ones. This analysis leads to the conclusion that the new values are expected to be reliable over the last 5 Ma in the time domain and at least over the last 10 Ma in the frequency domain.
Resumo:
A reconstruction of northwest African summer monsoon strength during the cold marine isotopic stage (MIS) 6 indicates a link to the seasonal migration of the Intertropical Convergence Zone (ITCZ). High-resolution studies of eolian dust supply and sea surface temperature recorded in marine core MD03-2705, on the Mauritanian margin, provide a better understanding about the penultimate glacial history of northwestern African aridity/humidity and upwelling coastal activity. Today, site MD03-2705 experiences increased upwelling and dust flux during the winter months, when the ITCZ is in a southerly position. Analyses of foraminifera isotopic composition suggest that during MIS 6.5 (180-168 ka) the average position of the ITCZ migrated north, marked by an increase in the strength of the summer monsoon, which decreased eolian dust transport and the coastal upwelling activity. The northward migration is in phase with a specific orbital combination of a low precessional index with a high obliquity signal. High-resolution analysis of stable isotopes (d18O and d13C) and microscale resolution geochemical (Ti/Al and quartz grain counts) determinations reveal that the transition between monsoonal humid (MIS 6.5) and dry (MIS 6.4) conditions has occurred in less than 1.3 ka. Such rapid changes suggest a nonlinear link between the African monsoonal rainfall system and environmental changes over the continent. This study provides new insights about the influence of vegetation and oceanic temperature feedbacks on the onset of African summer monsoon and demonstrates that, during the penultimate glacial period, changes in tropical dynamics had regional and global impacts.
Resumo:
Records of biogenic and terrigenous components have been obtained from the interval corresponding to the last 2.6 m.y. of ODP Sites 643 and 644 in order to reconstruct surface and deep water regimes in the Norwegian Sea. Surface water regimes record long lasting moderate glacial conditions during the interval 2.6 1.0 Ma. Small intrusions of Atlantic water episodically penetrated into the Norwegian Sea forming a narrow tongue along the eastern margin, which is documented at Site 644. The polar front was most probably situated between the Site 644 and 643 locations on the outer Voring Plateau during these time intervals. Deep water regimes reflect long-term persistent corrosive bottom waters, most probably due to a weakly undersaturated water column and a low rate of carbonate shell production in surface waters. Deep water production in the Norwegian-Greenland Sea may have operated in a different way, e.g. brine formation during winter sea ice growth. Bottom waters were oxygenated throughout the entire period, and deep water was exchanged persistently with the North Atlantic. Increased glacial/interglacial enviromental contrasts are documented, reflecting a strengthening of the Norwegian Current and intensified glaciations on the surrounding land masses during the interval 1.0 0.6 Ma. During this time a major shift in the mode of deep water production occurred. Tile onset of large amplitudes in glacial/interglacial environmental conditions with maximum contrasts in surface water regimes, different modes of deep water production, and intensified exchange with the North Atlantic marks the last 0.6 Ma. A broad development of the Norwegian Current is observed during peak interglacials, while during glacials seasonally variable sea ice cover and iceberg drift dominate surface water conditions.
Resumo:
Many (bio)geochemical processes that bring about changes in sediment chemistry normally begin at the sediment-water interface, continue at depth within the sediment column and may persist throughout the lifetime of sediments. Because of the differential reactivity of sedimentary phosphate phases in response to diagenesis, dissolution/precipitation and biological cycling, the oxygen isotope ratios of phosphate (d18OP) can carry a distinct signature of these processes, as well as inform on the origin of specific P phases. Here, we present results of sequential sediment extraction (SEDEX) analyses combined with d18OP measurements, aimed at characterizing authigenic and detrital phosphate phases in continental margin sediments from three sites (Sites 1227, 1228 and 1229) along the Peru Margin collected during ODP Leg 201. Our results show that the amount of P in different reservoirs varies significantly in the upper 50 m of the sediment column, but with a consistent pattern, for example, detrital P is highest in siliciclastic-rich layers. The d18OP values of authigenic phosphate vary between 20.2 per mil and 24.8 per mil and can be classified into at least two major groups: authigenic phosphate precipitated at/near the sediment-water interface in equilibrium with paleo-water oxygen isotope ratios (d18Ow) and temperature, and phosphate derived from hydrolysis of organic matter (Porg) with subsequent incomplete to complete re-equlibration and precipitated deeper in the sediments column. The d18OP values of detrital phosphate, which vary from 7.7-15.4 per mil, suggest two possible terrigenous sources and their mixtures in different proportions: phosphate from igneous/metamorphic rocks and phosphate precipitated in source regions in equilibrium with d18Ow of meteoric water. More importantly, original isotopic compositions of at least one phase of authigenic phosphates and all detrital phosphates are not altered by diagenesis and other biogeochemical changes within the sediment column. These findings help to understand the origin and provenance of P phases and paleoenvironmental conditions at/near the sediment-water interface, and to infer post-depositional activities within the sediment column.
Resumo:
Hole 504B in the eastern equatorial Pacific has been the focus of five scientific drilling expeditions since it was first drilled in 1979. During these five legs, a series of temperature logs has been obtained over a time span of almost 8 yr, documenting the geothermal and hydrologic state of the oceanic crust in this region. Immediately following reentry at the onset of ODP Leg 111 operations, a high-resolution temperature probe was lowered into the borehole and a precise record of temperature vs. depth in Hole 504B was recorded down to 1300 mbsf. As was observed during previous legs, the temperature gradient in the upper 400 m was reduced, indicating that downhole flow of cool ocean waters through the casing continued, though at a diminished rate. As subhydrostatic pressures in the upper basement have gradually diminished, the volume of flow has decayed from an estimated 6000-7000 L/hr in late 1979 to about 80 L/hr during Leg 111. At depths below 480 mbsf, a predominantly conductive heat transfer environment enabled the temperature gradient log to be analyzed with respect to lithology on both fine and broad scales. Anomalies in the gradient log in the cased section through the sedimentary column were found to correspond to biostratigraphic age markers and/or sharp changes in sediment composition and texture. Broad variations in temperature gradient within the basement correlated with large-scale porosity trends. Conductive heatflow estimates depict a systematic reduction with depth, ranging from approximately 196 mW/m**2 in the sediments to 120 ± 17 mW/m**2 at 1300 mbsf. Possible causes for this observation were examined from several perspectives, but none was suitably convincing. A fluid instability analysis indicated the likely existence of convection cells within the borehole and substantiated the hypothesis of mixing within the borehole postulated from isotopic and chemical studies of borehole waters. However, such mixing of borehole fluids does not provide an adequate explanation for the heatflow variations, and the disparity between surficial and deep values of heat flow remains unresolved.
Resumo:
Dissolution of non-aqueous phase liquids (NAPLs) or gases into groundwater is a key process, both for contamination problems originating from organic liquid sources, and for dissolution trapping in geological storage of CO2. Dissolution in natural systems typically will involve both high and low NAPL saturations and a wide range of pore water flow velocities within the same source zone for dissolution to groundwater. To correctly predict dissolution in such complex systems and as the NAPL saturations change over time, models must be capable of predicting dissolution under a range of saturations and flow conditions. To provide data to test and validate such models, an experiment was conducted in a two-dimensional sand tank, where the dissolution of a spatially variable, 5x5 cm**2 DNAPL tetrachloroethene source was carefully measured using x-ray attenuation techniques at a resolution of 0.2x0.2 cm**2. By continuously measuring the NAPL saturations, the temporal evolution of DNAPL mass loss by dissolution to groundwater could be measured at each pixel. Next, a general dissolution and solute transport code was written and several published rate-limited (RL) dissolution models and a local equilibrium (LE) approach were tested against the experimental data. It was found that none of the models could adequately predict the observed dissolution pattern, particularly in the zones of higher NAPL saturation. Combining these models with a model for NAPL pool dissolution produced qualitatively better agreement with experimental data, but the total matching error was not significantly improved. A sensitivity study of commonly used fitting parameters further showed that several combinations of these parameters could produce equally good fits to the experimental observations. The results indicate that common empirical model formulations for RL dissolution may be inadequate in complex, variable saturation NAPL source zones, and that further model developments and testing is desirable.