110 resultados para nitrogen cycling
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
In this study we present combined high-resolution records of sea surface temperature (SST), phytoplankton productivity, and nutrient cycling in the Benguela Upwelling System (BUS) for the past 3.5 Ma. The SST record provided evidence that upwelling activity off Namibia mainly intensified ca. 2.4-2.0 Ma ago in response to the cooling of the Southern Ocean and the resultant strengthening of trade winds. As revealed by productivity-related proxies, BUS intensification led to a major transition in regional biological productivity when considering the termination of the Matuyama Diatom Maximum (a diatom high-production event). Major oceanic reorganization in the Benguela was accompanied by nutrient source changes, as indicated by a new nitrogen isotopic (delta15N) record that revealed a stepwise increase at ca. 2.4 and ca. 1.5 Ma ago. The change in source region likely resulted from significant changes in intermediate water formation tied to the reorganization of oceanic conditions in the Southern Ocean, which may have in turn mainly controlled the global ocean N cycle, and therefore the N isotopic composition of nutrients since 3.5 Ma ago.
Resumo:
With each cellular generation, oxygenic photoautotrophs must accumulate abundant protein complexes that mediate light capture, photosynthetic electron transport and carbon fixation. In addition to this net synthesis, oxygenic photoautotrophs must counter the light-dependent photoinactivation of Photosystem II (PSII), using metabolically expensive proteolysis, disassembly, resynthesis and re-assembly of protein subunits. We used growth rates, elemental analyses and protein quantitations to estimate the nitrogen (N) metabolism costs to both accumulate the photosynthetic system and to maintain PSII function in the diatom Thalassiosira pseudonana, growing at two pCO2 levels across a range of light levels. The photosynthetic system contains c. 15-25% of total cellular N. Under low growth light, N (re)cycling through PSII repair is only c. 1% of the cellular N assimilation rate. As growth light increases to inhibitory levels, N metabolite cycling through PSII repair increases to c. 14% of the cellular N assimilation rate. Cells growing under the assumed future 750 ppmv pCO2 show higher growth rates under optimal light, coinciding with a lowered N metabolic cost to maintain photosynthesis, but then suffer greater photoinhibition of growth under excess light, coincident with rising costs to maintain photosynthesis. We predict this quantitative trait response to light will vary across taxa.
Resumo:
As an estimate of plant-available N, this data set contains measurements of inorganic nitrogen (NO3-N and NH4-N, the sum of which is termed mineral N or Nmin) determined by extraction with 1 M KCl solution of soil samples from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m and 0.15 to 0.3 m of the mineral soil from each of the experimental plots in September 2002. Samples of the soil cores per plot were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, Skalar, Breda, Netherlands).
Resumo:
As an estimate of plant-available N, this data set contains measurements of inorganic nitrogen (NO3-N and NH4-N, the sum of which is termed mineral N or Nmin) determined by extraction with 1 M KCl solution of soil samples from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m and 0.15 to 0.3 m of the mineral soil from each of the experimental plots in March and October 2004. Samples of the soil cores per plot were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, Skalar, Breda, Netherlands).
Resumo:
This data set contains measurements of dissolved nitrogen (total dissolved nitrogen: TDN, dissolved organic nitrogen: DON, dissolved ammonium: NH4+, and dissolved nitrate: NO3-) in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 µm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for nitrate (NO3-) and ammonium (NH4+) concentrations with a continuous flow analyzer (CFA, Skalar, Breda, The Netherlands). Nitrate was analyzed photometrically after reduction to NO2- and reaction with sulfanilamide and naphthylethylenediamine-dihydrochloride to an azo-dye. Our NO3- concentrations contained an unknown contribution of NO2- that is expected to be small. Simultaneously to the NO3- analysis, NH4+ was determined photometrically as 5-aminosalicylate after a modified Berthelot reaction. The detection limits of NO3- and NH4+ were 0.02 and 0.03 mg N L-1, respectively. Total dissolved N in soil solution was analyzed by oxidation with K2S2O8 followed by reduction to NO2- as described above for NO3-. Dissolved organic N (DON) concentrations in soil solution were calculated as the difference between TDN and the sum of mineral N (NO3- + NH4+). In 5% of the samples, TDN was equal to or smaller than mineral N. In these cases, DON was assumed to be zero.