114 resultados para minicoluna de sílica C18
Resumo:
Sediments of upwelling regions off Namibia, Peru, and Chile contain dense populations of large nitrate-storing sulfide-oxidizing bacteria, Thiomargarita, Beggiatoa, and Thioploca. Increased contents of monounsaturated C16 and C18 fatty acids have been found at all stations studied, especially when a high density of sulfide oxidizers in the sediments was observed. The distribution of lipid biomarkers attributed to sulfate reducers (10MeC16:0 fatty acid, ai-C15:0 fatty acid, and mono-O-alkyl glycerol ethers) compared to the distribution of sulfide oxidizers indicate a close association between these bacteria. As a consequence, the distributions of sulfate reducers in sediments of Namibia, Peru, and Chile are closely related to differences in the motility of the various sulfide oxidizers at the three study sites. Depth profiles of mono-O-alkyl glycerol ethers have been found to correlate best with the occurrence of large sulfide-oxidizing bacteria. This suggests a particularly close link between mono-O-alkyl glycerol ether-synthesizing sulfate reducers and sulfide oxidizers. The interaction between sulfide-oxidizing bacteria and sulfate-reducing bacteria reveals intense sulfur cycling and degradation of organic matter in different sediment depths.
Resumo:
Sedimentary extractable organic matter was analyzed at three ODP Leg 104 sites in the Norwegian Sea. Organic carbon content ranged from less than 0.1% to a maximum of 1.8%. Extractable organic matter content and unresolved complex mixture concentrations were low and randomly distributed. Low levels of aliphatic (branched and normal) and aromatic hydrocarbons were detected in all of the sediments analyzed. Total aliphatic and aromatic hydrocarbon concentrations ranged from 176 to 3,214 and 6 to 820 ppb, respectively. The concentrations of individual aliphatic (n-C15 to n-C32) and aromatic (two- to five-ring) hydrocarbons were generally less than 50 ppb and less than 10 ppb, respectively. No significant trend with sub-bottom depth was observed in either bulk organic matter or individual hydrocarbon concentrations. The predominant source of Cenozoic sedimentary hydrocarbons is concluded to be ice-rafted debris from the adjacent continent. All sites contain a mixture of recycled, mature petroleum-related and terrestrially derived hydrocarbons.
Resumo:
The carbon geochemistry of serpentinized peridotites and gabbroic rocks recovered at the Lost City Hydrothermal Field (LCHF) and drilled at IODP Hole 1309D at the central dome of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) was examined to characterize carbon sources and speciation in oceanic basement rocks affected by long-lived hydrothermal alteration. Our study presents new data on the geochemistry of organic carbon in the oceanic lithosphere and provides constraints on the fate of dissolved organic carbon in seawater during serpentinization. The basement rocks of the Atlantis Massif are characterized by total carbon (TC) contents of 59 ppm to 1.6 wt% and 17863_TC values ranging from -28.7? to +2.3?. In contrast, total organic carbon (TOC) concentrations and isotopic compositions are relatively constant (d13C_TOC: -28.9? to -21.5?) and variations in d13CTC reflect mixing of organic carbon with carbonates of marine origin. Saturated hydrocarbons extracted from serpentinites beneath the LCHF consist of n-alkanes ranging from C15 to C30. Longer-chain hydrocarbons (up to C40) are observed in olivine-rich samples from the central dome (IODP Hole 1309D). Occurrences of isoprenoids (pristane, phytane and squalane), polycyclic compounds (hopanes and steranes) and higher relative abundances of n-C16 to n-C20 alkanes in the serpentinites of the southern wall suggest a marine organic input. The vent fluids are characterized by high concentrations of methane and hydrogen, with a putative abiotic origin of hydrocarbons; however, evidence for an inorganic source of n-alkanes in the basement rocks remains equivocal. We propose that high seawater fluxes in the southern part of the Atlantis Massif likely favor the transport and incorporation of marine dissolved organic carbon and overprints possible abiotic geochemical signatures. The presence of pristane, phytane and squalane biomarkers in olivine-rich samples associated with local faults at the central dome implies fracture-controlled seawater circulation deep into the gabbroic core of the massif. Thus, our study indicates that hydrocarbons account for an important proportion of the total carbon stored in the Atlantis Massif basement and suggests that serpentinites may represent an important (as yet unidentified) reservoir for dissolved organic carbon (DOC) from seawater.
Resumo:
Optimum conditions were selected for chromatographic separation of model mixtures of C12-C40 n-alkanes. For one of samples of hydrothermal deposits extraction conditions of hydrocarbons were studied and a sample preparation procedure was selected. The procedure was proposed to determine n-alkanes in samples of hydrothermal deposits by means of gas chromatography - mass spectrometry (GC-MS). Detection limit for n-alkanes was 3x10**-9 to 10**-8% depending on components. On the basis of the proposed procedure composition of n-alkanes was studied in samples of hydrothermal deposits collected at the Mid-Atlantic Ridge (Broken Spur, Lost City, and Rainbow hydrothermal fields). Analyses showed that samples contained C14-C35 n-alkanes. Concentrations of the n-alkanes were rather low and varied from 0.002 to 0.038 µg/g. Hypotheses concerning genesis of identified n-alkanes were offered.
Resumo:
The book is devoted to fundamental problems of organic geochemistry of ocean sediments. It is based on materials of organic matter and gas studies in cores from DSDP Legs 50 and 64. Experimental results obtained in the Laboratory of Carbon Geochemistry (V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry, Moscow) take the main part of the book. Evolution of organic matter in specific environment of deep ocean sediments, sources of organic matter in the ocean and methods of their identification based on isotopic analysis and other methods are under discussion. Gas geochemistry in normal conditions of diagenesis, and in conditions under intense heating is studied.
Resumo:
Results of geochemical studies of organic matter in black shales from the Cape Verde Basin are reported. Based on these results, in combination with data of petrographic analysis, conclusions are made about sapropelic nature of their organic matter and low degree of its coalification. It corresponds to the proto-catagenetic substage of sedimentary rocks. Black shales of the Cape Verde Basin are classified as potential oil source strata.
Resumo:
The 11 frozen cores from the Mariana Trough area from Holes 452 through 455, 459B, 460, and 460A are characteristically low in organic carbon (less than 0.2%) and contain a predominance of n-alkanes within the saturates fraction. There is no odd-predominance of n-alkanes as is typical of immature recent sediments. However, recent sediments containing immature organic matter with normal distributions of n-alkanes {OEP1 approximately equal to 1) are characteristic of sediments derived from purely marine sources (Brooks, 1970; Powell and McKirdy, 1973; Tissot et al., 1975). This type of sediment is very rare. However, at least one case where an immature sediment contains an OEP of near 1 has been reported in samples similar to those reported herein - that is, the Cariaco Trench (Hunt, 1979).