88 resultados para least absolute deviation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sensitivity of terrestrial environments to past changes in heat transport is expected to be manifested in Holocene climate proxy records on millennial to seasonal timescales. Stalagmite formation in the Okshola cave near Fauske (northern Norway) began at about 10.4 ka, soon after the valley was deglaciated. Past monitoring of the cave and surface has revealed stable modern conditions with uniform drip rates, relative humidity and temperature. Stable isotope records from two stalagmites provide time-series spanning from c. 10380 yr to AD 1997; a banded, multi-coloured stalagmite (Oks82) was formed between 10380 yr and 5050 yr, whereas a pristine, white stalagmite (FM3) covers the period from ~7500 yr to the present. The stable oxygen isotope (delta18Oc), stable carbon isotope (delta13Cc), and growth rate records are interpreted as showing i) a negative correlation between cave/surface temperature and delta18Oc, ii) a positive correlation between wetness and delta13Cc, and iii) a positive correlation between temperature and growth rate. Following this, the data from Okshola show that the Holocene was characterised by high-variability climate in the early part, low-variability climate in the middle part, and high-variability climate and shifts between two distinct modes in the late part. A total of nine Scandinavian stalagmite delta18Oc records of comparable dating precision are now available for parts or most of the Holocene. None of them show a clear Holocene thermal optimum, suggesting that they are influenced by annual mean temperature (cave temperature) rather than seasonal temperature. For the last 1000 years, delta18Oc values display a depletion-enrichment-depletion pattern commonly interpreted as reflecting the conventional view on climate development for the last millennium. Although the delta18Oc records show similar patterns and amplitudes of change, the main challenges for utilising high-latitude stalagmites as palaeoclimate archives are i) the accuracy of the age models, ii) the ambiguity of the proxy signals, and iii) calibration with monitoring data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Sr and Nd isotopic composition of dust extracted from recent snow layers at the top of Berkner Island ice sheet (located within the Filchner-Ronne Ice Shelf at the southern end of the Weddell Sea) enables us, for the first time, to document dust provenance in Antarctica outside the East Antarctic Plateau (EAP) where all previous studies based on isotopic fingerprinting were carried out. Berkner dust displays an overall crust-like isotopic signature, characterized by more radiogenic 87Sr/86Sr and much less radiogenic 143Nd/144Nd compared to dust deposited on the EAP during glacial periods. Differences with EAP interglacial dust are not as marked but still significant, indicating that present-day Berkner dust provenance is distinct, at least to some extent, from that of the dust reaching the EAP. The fourteen snow-pit sub-seasonal samples that were obtained span a two-year period (2002-2003) and their dust Sr and Nd isotopic composition reveals that multiple sources are at play over a yearly time period. Southern South America, Patagonia in particular, likely accounts for part of the observed spring/summer dust deposition maxima, when isotopic composition is shifted towards 'younger' isotopic signatures. In the spring, possible additional inputs from Australian sources would also be supported by the data. Most of the year, however, the measured isotopic signatures would be best explained by a sustained background supply from putative local sources in East Antarctica, which carry old-crust-like isotopic fingerprints. Whether the restricted East Antarctic ice-free areas produce sufficient eolian material has yet to be substantiated however. The fact that large (> 5 µm) particles represent a significant fraction of the samples throughout the entire time-series supports scenarios that involve contributions from proximal sources, either in Patagonia and/or Antarctica (possibly including snow-free areas in the Antarctic Peninsula and other areas as well). This also indicates that additional dust transport, which does not reach the EAP, must occur at low-tropospheric levels to this coastal sector of Antarctica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a deuterium excess (d) record from an ice core drilled on a small ice cap in Svalbard in 1997. The core site is located at Lomonosovfonna at 1255 m asl, and the analyzed time series spans the period 1400-1990 A.D. The record shows pronounced multidecadal to centennial-scale variations coherent with sea surface temperature changes registered in the subtropical to southern middle-latitude North Atlantic during the instrumental period. We interpret the negative trend in the deuterium excess during the 1400s and 1500s as an indication of cooling in the North Atlantic associated with the onset of the Little Ice Age. Consistently positive anomalies of d after 1900, peaking at about 1950, correspond with well-documented contemporary warming. Yet the maximum values of deuterium excess during 1900-1990 are not as high as in the early part of the record (pre-1550). This suggests that the sea surface temperatures during this earlier period of time in the North Atlantic to the south of approximately 45°N were at least comparable with those registered in the 20th century before the end of the 1980s. We examine the potential for a cold bias to exist in the deuterium excess record due to increased evaporation from the local colder sources of moisture having isotopically cold signature. It is argued that despite a recent oceanic warming, the contribution from this local moisture to the Lomonosovfonna precipitation budget is still insufficient to interfere with the isotopic signal from the primary moisture region in the midlatitude North Atlantic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intensity of North Atlantic Deep Water (NADW) production has been one of the most important parameters controlling the global thermohaline ocean circulation system and climate. Here we present a new approach to reconstruct the overall strength of NADW export from the North Atlantic to the Southern Ocean over the past 14 Myr applying the deep water Nd and Pb isotope composition as recorded by ferromanganese crusts and nodules. We present the first long-term Nd and Pb isotope time series for deep Southern Ocean water masses, which are compared with previously published time series for NADW from the NW Atlantic Ocean. These data suggest a continuous and strong export of NADW, or a precursor of it, into the Southern Ocean between 14 and 3 Ma. An increasing difference in Nd and Pb isotope compositions between the NW Atlantic and the Southern Ocean over the past 3 Myr gives evidence for a progressive overall reduction of NADW export since the onset of Northern Hemisphere glaciation (NHG). The Nd isotope data allow us to assess at least semiquantitatively that the amount of this reduction has been in the range between 14 and 37% depending on location.