267 resultados para lay date


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basal melt of ice shelves may lead to an accumulation of disc-shaped ice platelets underneath nearby sea ice, to form a sub-ice platelet layer. Here we present the seasonal cycle of sea ice attached to the Ekström Ice Shelf, Antarctica, and the underlying platelet layer in 2012. Ice platelets emerged from the cavity and interacted with the fast-ice cover of Atka Bay as early as June. Episodic accumulations throughout winter and spring led to an average platelet-layer thickness of 4 m by December 2012, with local maxima of up to 10 m. The additional buoyancy partly prevented surface flooding and snow-ice formation, despite a thick snow cover. Subsequent thinning of the platelet layer from December onwards was associated with an inflow of warm surface water. The combination of model studies with observed fast-ice thickness revealed an average ice-volume fraction in the platelet layer of 0.25 +/- 0.1. We found that nearly half of the combined solid sea-ice and ice-platelet volume in this area is generated by heat transfer to the ocean rather than to the atmosphere. The total ice-platelet volume underlying Atka Bay fast ice was equivalent to more than one-fifth of the annual basal melt volume under the Ekström Ice Shelf.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phytoplankton community composition and productivity in waters of the Amundsen Sea and surrounding sea ice zone were characterized with respect to iron (Fe) input from melting glaciers. High Fe input from glaciers such as the Pine Island Glacier, and the Dotson and Crosson ice shelves resulted in dense phytoplankton blooms in surface waters of Pine Island Bay, Pine Island Polynya, and Amundsen Polynya. Phytoplankton biomass distribution was the opposite of the distribution of dissolved Fe (DFe), confirming the uptake of glacial DFe in surface waters by phytoplankton. Phytoplankton biomass in the polynyas ranged from 0.6 to 14 µg Chl a / L, with lower biomass at glacier sites where strong upwelling of Modified Circumpolar Deep Water from beneath glacier tongues was observed. Phytoplankton blooms in the polynyas were dominated by the haptophyte Phaeocystis antarctica, whereas the phytoplankton community in the sea ice zone was a mix of P. antarctica and diatoms, resembling the species distribution in the Ross Sea. Water column productivity based on photosynthesis versus irradiance characteristics averaged 3.00 g C /m**2/d in polynya sites, which was approximately twice as high as in the sea ice zone. The highest water column productivity was observed in the Pine Island Polynya, where both thermally and salinity stratified waters resulted in a shallow surface mixed layer with high phytoplankton biomass. In contrast, new production based on NO3 uptake was similar between different polynya sites, where a deeper UML in the weakly, thermally stratified Pine Island Bay resulted in deeper NO3 removal, thereby offsetting the lower productivity at the surface. These are the first in situ observations that confirm satellite observations of high phytoplankton biomass and productivity in the Amundsen Sea. Moreover, the high phytoplankton productivity as a result of glacial input of DFe is the first evidence that melting glaciers have the potential to increase phytoplankton productivity and thereby CO2 uptake, resulting in a small negative feedback to anthropogenic CO2 emissions.