156 resultados para fluvial sediments
Resumo:
Mass accumulation rates (MAR) of different components of North Pacific deep-sea sediment provide detailed information about the timing of the onset of major Northern Hemisphere glaciation that occurred at 2.65 Ma. An increase in explosive volcanism in the Kamchatka-Kurile and Aleutian arcs occured at this same time, suggesting a link between volcanism and glaciation. Sediments recovered by piston-coring techniques during ODP Leg 145 provide a unique opportunity to undertake a detailed test of this possibility. Here we use volcanic glass as a proxy for explosive volcanism and ice-rafted debris (IRD) as a proxy for glaciation. The MAR of both glass and IRD increase markedly at 2.65 Ma. Further, the flux of the volcanic glass increased just prior the flix of ice-radted material, suggesting that the cooling resulting from explosive volcanic eruptions may have been the ultimate trigger for the mid-Pliocene glacial intensification.
Resumo:
An isobathic transect of marine surface sediments from 1°N to 28°S off southwest Africa was used to further evaluate the potential of the chain length distribution and carbon stable isotope composition of higher plant n-alkanes as proxies for continental vegetation and climate conditions. We found a strong increase in the n-C29-33 weighted mean average d13C values from -33 per mil near the equator to around -26 per mil further south. Additionally, C25-35n-alkanes reveal a southward trend of increasing average chain length from 30.0 to 30.5. The data reflect the changing contribution of plants employing different photosynthetic pathways (C3 and C4) and/or being differently influenced by the environmental conditions of their habitat. The C4 plant proportions calculated from the data (ca. 20% for rivers draining the rainforest, to ca. 70% at higher latitude) correspond to the C4 plant abundance in continental catchment areas postulated by considering prevailing wind systems and river outflows. Furthermore, the C4 plant contribution to the sediments correlates with the mean annual precipitation and aridity at selected continental locations in the postulated catchment areas, suggesting that the C4 plant fraction in marine sediments can be used to assess these environmental parameters.
Resumo:
Surface mineralogical compositions and their association to modern processes are well known from the east Atlantic and south-west Indian sectors of the Southern Ocean, but data from the interface of these areas - the Prydz Bay-Kerguelen region - is still missing. The objective of our study was to provide mineralogical data of reference samples from this region and to relate these mineralogical assemblages to hinterland geology, weathering, transport and depositional processes. Clay mineral assemblages were analysed by means of X-ray diffraction technique. Heavy mineral assemblages were determined by counting of gravity-separated grains under a polarizing microscope. Results show that by use of clay mineral assemblages four mineralogical provinces can be subdivided: i) continental shelf, ii) continental slope, iii) deep sea, iv) Kerguelen Plateau. Heavy mineral assemblages in the fine sand fraction are relatively uniform except for samples taken from the East Antarctic shelf. Our findings show that mineralogical studies on sediment cores from the study area have the potential to provide insights into past shifts in ice-supported transport and activity and provenance of different water masses (e.g. Antarctic slope current and deep western boundary current) in the Prydz Bay-Kerguelen region.
Resumo:
The muricate planktonic foraminiferal genera Morozovella and Acarinina were abundant and diverse during the upper Palaeocene to middle Eocene and dominated the tropical and subtropical assemblages. A significant biotic turnover in planktonic foraminifera occurred in the latest middle Eocene with a notable reduction in the acarininid lineage and the extinction of the morozovellids. These genera are extensively employed as palaeoclimatic and biostratigraphic markers and, therefore, this turnover episode is an important event in the record of the Cenozoic planktonic foraminifera. Sediments from the western North Atlantic (Ocean Drilling Program Site 1052) were examined in order to investigate these extinction events, in terms of both timing and mechanisms. Biostratigraphic events of the middle and late Eocene have been examined with a sampling resoluti on of approximately 3 kyr. These have been calibrated to the magneto- and astrochronology to accurately define the timing of key biostratigraphic events, particularly the extinction of Morozovella spinulosa which is a distinct biomarker for late middle Eocene sediments. High-resolution biostratigraphy reveals that the extinctions in the muricate group occurred in a stepwise form. The large acarininids (Acarinina praetopilensis) terminate 10 kyr prior to the extinction of M. spinulosa and small acarininids (Acarinina medizzai and Acarinina echinata) continue into the upper Eocene. High-resolution stable isotope analyses have been conducted on planktonic and benthic foraminifera from the western North Atlantic to reconstruct sea surface temperatures (SSTs) and deep water temperatures and the structure of the water column around this major biotic turnover. Whilst the extinctions of M. spinulosa and A. praetopilensis occur during a long-term cooling trend, the biotic turnover in the muricate group does not appear to be related to significant climatic change. Sea surface temperatures decrease slowly prior to the extinction events, and there is no evidence for a large-temperature shift associated with the faunal changes. The turnover event was therefore probably related to the increased surface water productivity and the deterioration of photosymbiotic partnerships with algae.
Resumo:
Biostratigraphical, taxonomical, and palaeocological results were obtained from Oxfordian to Tithonian foraminifers of the Northern and Southern Atlantic Ocean boreholes of the DSDP Legs 1, 11, 36, 41, 44, 50, and 79. An oversight on the cored Jurassic sections of the DSDP Legs 79 and the corresponding foraminiferal descriptions are given. The reddish brown, clayey and carbonaceous Cat Gap Formation (Oxfordian to Tithonian) of the Northern Atlantic Ocean, rich in radiolarians, yields less or more uniform, in most cases allochthonous foraminiferal faunas of Central European shelf character. No Callovian and Upper Tithonian foraminiferaI zones can be established. The zone of Pseudomarssonella durnortieri covers the Oxfordian/Kimmeridgian, the zone of Neobulimina atlantica the Kimmeridgian/Lower Tithonian interval. Characteristic foraminiferal faunas are missing since the Upper Tithonian to Valanginian for reason of a widely distributed regression which caused hiatuses observed all over the Northern Atlantic Ocean and in parts of Europe. The Upper Jurassic cannot be subdivided into single stages by foraminiferal biostratigraphy alone. The fovaminiferal zones established by Moullad (1984) covering a Callovian-Tithonian interval may be of some local importance in the Tethyan realm: It has too long-ranging foraminiferal species to be used as index marker in the word-wide DSDP boreholes. Some taxonomical confusion is caused because in former publications some foraminiferal species have got different names both in the Jurassic and Cretaceous. The foraminiferal biostratigraphy of drilled sections from DSDP boreholes is restricted by the drilling technique and for palaeo-oceanographical, biological, and geological reasons. Foraminiferal faunas from the DSDP originally described as ,,bathyal, or ,,abyssal,, have to be derived from shallower water. This contrasts the palaeo-water depths of 3000-4000 m which result from sedimentological and palaeo-geographical investigations.
Resumo:
We analyzed a suite of sediment samples recovered in the central Arctic Ocean for major, trace, and rare earth elements in order to assess changes in terrigenous source material throughout the Cenozoic. The terrigenous component consists of two end-members. Input from a shale-like composition dominates bulk sediments, especially those deposited during the Paleocene and since the Miocene, and may represent sediment supply from the eastern Laptev Sea. Therefore, even though the environment and transport mechanisms may have varied from ice free to ice dominated, sequences of the early Paleogene and later Neogene appear to have been influenced by a single major terrigenous source. This suggests similar transport capabilities and trajectories for both ocean and drift currents through significant parts of the Cenozoic. Influence from a more mafic source appears to be more important through the early Eocene to the middle Miocene and most likely represents material from the western Laptev Sea or Kara Sea. Thus, Eocene major changes in surface water productivity appear broadly synchronous with those in terrigenous provenance. A combination of regional sea level variations, local shelf processes, and transport mechanisms are among the more probable causes for the observed source changes. Although the assignment of sources using chemistry presently is constrained by a lack of data from certain regions (e.g., eastern Siberian Sea) our results generally agree with inferences based on mineralogy or radiogenic isotopes and shed further light on long-term reconstructions of the central Arctic Ocean.
Resumo:
Hydrocarbon seeps are ubiquitous at gas-prone Cenozoic deltas such as the Nile Deep Sea Fan (NDSF) where seepage into the bottom water has been observed at several mud volcanoes (MVs) including North Alex MV (NAMV). Here we investigated the sources of hydrocarbon gases and sedimentary organic matter together with biomarkers of microbial activity at four locations of NAMV to constrain how venting at the seafloor relates to the generation of hydrocarbon gases in deeper sediments. At the centre, high upward flux of hot (70 °C) hydrocarbon-rich fluids is indicated by an absence of biomarkers of Anaerobic Oxidation of Methane (AOM) and nearly constant methane (CH4) concentration depth-profile. The presence of lipids of incompatible thermal maturities points to mixing between early-mature petroleum and immature organic matter, indicating that shallow mud has been mobilized by the influx of deep-sourced hydrocarbon-rich fluids. Methane is enriched in the heavier isotopes, with values of d13C ~-46.6 per mil VPDB and dD ~-228 per mil VSMOW, and is associated with high amounts of heavier homologues (C2+) suggesting a co-genetic origin with the petroleum. On the contrary at the periphery, a lower but sustained CH4 flux is indicated by deeper sulphate-methane transition zones and the presence of 13C-depleted biomarkers of AOM, consistent with predominantly immature organic matter. Values of d13C-CH4 ~-60 per mil VPDB and decreased concentrations of 13C-enriched C2+ are typical of mixed microbial CH4 and biodegraded thermogenic gas from Plio-Pleistocene reservoirs of the region. The maturity of gas condensate migrated from pre-Miocene sources into Miocene reservoirs of the Western NDSF is higher than that of the gas vented at the centre of NAMV, supporting the hypothesis that it is rather released from the degradation of oil in Neogene reservoirs. Combined with the finding of hot pore water and petroleum at the centre, our results suggest that clay mineral dehydration of Neogene sediments, which takes place posterior to reservoir filling, may contribute to intense gas generation at high sedimentation rate deltas.