60 resultados para exit
Resumo:
The effect of volcanic activity on submarine hydrothermal systems has been well documented along fast- and intermediate-spreading centers but not from slow-spreading ridges. Indeed, volcanic eruptions are expected to be rare on slow-spreading axes. Here we report the presence of hydrothermal venting associated with extremely fresh lava flows at an elevated, apparently magmatically robust segment center on the slow-spreading southern Mid-Atlantic Ridge near 5°S. Three high-temperature vent fields have been recognized so far over a strike length of less than 2 km with two fields venting phase-separated, vapor-type fluids. Exit temperatures at one of the fields reach up to 407°C, at conditions of the critical point of seawater, the highest temperatures ever recorded from the seafloor. Fluid and vent field characteristics show a large variability between the vent fields, a variation that is not expected within such a limited area. We conclude from mineralogical investigations of hydrothermal precipitates that vent-fluid compositions have evolved recently from relatively oxidizing to more reducing conditions, a shift that could also be related to renewed magmatic activity in the area. Current high exit temperatures, reducing conditions, low silica contents, and high hydrogen contents in the fluids of two vent sites are consistent with a shallow magmatic source, probably related to a young volcanic eruption event nearby, in which basaltic magma is actively crystallizing. This is the first reported evidence for direct magmatic-hydrothermal interaction on a slow-spreading mid-ocean ridge.
Resumo:
Good faunal preservation in the upper part of the Planorotatites pseudomenardii Zone at Deep Sea Drilling Project Site 605, northwestern Atlantic, allows a biometric analysis of the upper Paleocene planktonic foraminiferal species Planorotatites pseudomenardii (Belli), a keeled species that probably developed from a middle Paleocene unkeeled Planorotalites form. Multivariate analysis shows a consistent separation of all Planorotatites specimens into two groups, which are differentiated by the presence or absence of a complete keel; other variables are only of minor importance. The keeled group coincides with P. pseudomenardii. We recognize only one unkeeled species, Planorotalites chapmani (Parr), with Planorotalites ehrenbergi (Bolli), Planorotalites imitata (Subbotina), Planorotalites planoconica (Subbotina), Planorotalites troelseni (Loeblich and Tappan), and Planorotalites hausbergensis (Gohrbrandt) as junior synonyms. P. chapmani ranges from the middle Paleocene to at least the top of the upper Paleocene. The morphology of P. pseudomenardii does not change significantly, and although the frequency of Planorotalites is variable, the proportion of P. pseudomenardii to all Planorotalites varies only slightly around 65% in the upper two-thirds of its range at Site 605. However, in the top 1.5 m of its range the proportion of P. pseudomenardii decreases; in the same section, all Planorotalites specimens show a reduction in the size of their tests, suggesting that a temporary change in environmental conditions led to the exit of P. pseudomenardii\ in Magnetozone C24R at Site 605-apparently higher than expected from current standard zonations. Unkeeled Planorotalites, in contrast to R. pseudomenardii, persisted and regained normal size. The entry of P. pseudomenardii at Site 605 cannot be described in the same detail because of low frequencies of Planorotalites specimens and an erratic distribution of P. pseudomenardii in the lower part of its range. Many of the washed residues of the samples from these sediments are dominated by radiolarians, and the poorly preserved foraminiferal faunas may have abundant benthics, indicating carbonate dissolution. The initially low frequencies of P pseudomenardii relative to the unkeeled Planorotalites show a strong negative correlation with the total amount of radiolarians per sample and could be the result of preferential preservation, as well as of the same environmental conditions that caused the abundance of radiolarians.
Resumo:
A ship-based acoustic mapping campaign was conducted at the exit of Ilulissat Ice Fjord and in the sedimentary basin of Disko Bay to the west of the fjord mouth. Submarine landscape and sediment distribution patterns are interpreted in terms of glaciomarine facies types that are related to variations in the past position of the glacier front. In particular, asymmetric ridges that form a curved entity and a large sill at the fjord mouth may represent moraines that depict at least two relatively stable positions of the ice front in the Disko Bay and at the fjord mouth. In this respect, Ilulissat Glacier shows prominent differences to the East Greenland Kangerlussuaq Glacier which is comparable in present size and present role for the ice discharge from the inland ice sheet. Two linear clusters of pockmarks in the center of the sedimentary basin seem to be linked to ongoing methane release due to dissociation of gas hydrates, a process fueled by climate warming in the Arctic realm.