133 resultados para ethidium bromide
Resumo:
During the ARK-XI/1 expedition of R/V Polarstern in July-September 1995 12 samples of aerosols were collected in lower atmosphere layer over the Laptev Sea by filtration of air through AFA-HA filters. Element composition of the samples was determined by instrumental neutron activation analysis. Average atmospheric concentrations of Cr, Mn, Fe, Co, Zn and As are higher than in other regions of the Arctic. This can be explained by natural reasons: (1) by input of particles from the surface microlayer of sea water enriched by many chemical elements, (2) by atmospheric transfer of organic matter and lithogenic material from the land, and (3) by resuspension of particles from ice-rafted sediments. In some samples anthropogenic pollution was registered.
Resumo:
The book is devoted to study of diagenetic changes of organic matter and mineral part of sediments and interstitial waters of the Pacific Ocean due to physical-chemical and microbiological processes. Microbiological studies deal with different groups of bacteria. Regularities of quantitative distribution and the role of microorganisms in geochemical processes are under consideration. Geochemical studies highlight redox processes of the early stages of sediment diagenesis, alterations of interstitial waters, regularities of variations in chemical composition of iron-manganese nodules.
Resumo:
Although ponds make up roughly half of the total area of surface water in permafrost landscapes, their relevance to carbon dioxide emissions on a landscape scale has, to date, remained largely unknown. We have therefore investigated the inflows and outflows of dissolved organic and inorganic carbon from lakes, ponds, and outlets on Samoylov Island, in the Lena Delta of northeastern Siberia in September 2008, together with their carbon dioxide emissions. Outgassing of carbon dioxide (CO2) from these ponds and lakes, which cover 25% of Samoylov Island, was found to account for between 74 and 81% of the calculated net landscape-scale CO2 emissions of 0.2-1.1 g C/m**2/d during September 2008, of which 28-43% was from ponds and 27-46% from lakes. The lateral export of dissolved carbon was negligible compared to the gaseous emissions due to the small volumes of runoff. The concentrations of dissolved inorganic carbon in the ponds were found to triple during freezeback, highlighting their importance for temporary carbon storage between the time of carbon production and its emission as CO2. If ponds are ignored the total summer emissions of CO2-C from water bodies of the islands within the entire Lena Delta (0.7-1.3 Tg) are underestimated by between 35 and 62%.
Resumo:
Authigenic carbonates in the caldera of an Arctic (72°N) submarine mud volcano with active methane-bearing fluid discharge are formed at the bottom surface during anaerobic microbial methane oxidation. The microbial community consists of specific methane-producing bacteria, which act as methanotrophic ones in conditions of excess methane, and sulfate reducers developing on hydrogen, which is an intermediate product of microbial CH4 oxidation. Isotopically light carbon (aver. d13C = -28.9 per mil) of CO2 produced during CH4 oxidation is the main carbonate carbon source. Heavy oxygen isotope ratio (aver. d18O = 5 per mil) in carbonates is inherited from seawater sulfate. Rapid sulfate reduction (up to 12 mg S/dm**3/day) results in total exhausting of sulfate ion in the upper sediment layer (10 cm). Because of this carbonates can only be formed in surface sediments near the water-bottom interface. Salinity as well as CO3/Ca and Mg/Ca ratios correspond to the field of non-magnesian calcium carbonate precipitation. Calcite is the dominant carbonate mineral in the methane seep caldera, where it occurs in the paragenetic association with barite. Radiocarbon age of carbonates is about 10 Ka.
Resumo:
Major-element compositions (Cl-, SO4[2-], Ca2+, Mg2+ , Li+ , K+, Na+ , Sr2+) of interstitial waters obtained from sediment cores along the ODP Leg 110 transect across the Northern Barbados accretionary prism have shown that a complex set of geochemical processes are of importance in this area. In the volcanic ash-rich Pleistocene-Pliocene sediments, alteration reactions involving volcanic ash lead to depletions of Mg2+ and K+. This process is confirmed by the much lower than contemporaneous seawater values of the 87Sr/86Sr ratios of dissolved strontium. In the deeper sediments recovered below the zone of decollement (Sites 671 and 672) large increases in Ca2+ and gradual decreases in Mg2+ , Na+, and d18O (H2O) indicate a potential contribution to the interstitial water chemistry by exchange with underlying basement rocks. This process has been hard to confirm because the drill holes were terminated well short of reaching basement. However, the concentration gradient pattern is consistent with observations in a large number of DSDP drill holes. Finally, but most importantly, low Cl- concentrations in the decollement zone and underlying sand layers, as well as in fault zones at Sites 673 and 674, indicate dilution of interstitial waters. The potential origins of the low Cl- concentrations are discussed, though we are not able to distinguish any mechanism in particular. Our evidence supports the concept of water migration along the decollement and through the underlying sandstones as well as along recent fault zones in the accretionary complex. Interstitial water concentration depth profiles are affected by faulting, thrusting, and overturn processes in the accretionary prism. These processes have caused a diminished diffusive exchange with the overlying ocean, thus explaining increased depletions in Mg2+ and SO4[2-] in sites farther onto the accretionary prism.
Resumo:
Pore waters were analyzed from 6 holes drilled from M.V. "Eureka" as a part of the Shell Oil Co. deeper offshore study. The holes were drilled in water depths of 600-3000 ft. (approximately 180-550 m) and penetrated up to 1000 ft. (300 m) of Pliocene-Recent clayey sediments. Salt and anhydrite caprock was encountered in one diapiric structure on the continental slope. Samples from holes drilled near diapiric structures showed systematic increases of pore-water salinity with depth, suggestive of salt diffusion from underlying salt plugs. Anomalous concentrations of K and Br indicate that at least one plug contains late-stage evaporite minerals. Salinities approaching halite saturation were observed. Samples from holes away from diapiric structures showed little change in pore-water chemistry, except for loss of SO4 and other variations attributable to early-stage diagenetic reactions with enclosing sediments. Thus, increased salt concentrations in even shallow sediments from this part of the Gulf appear to provide an indicator of salt masses at depth.
Resumo:
Phosphorus cycling in the ocean is influenced by biological and geochemical processes that are reflected in the oxygen isotope signature of dissolved inorganic phosphate (Pi). Extending the Pi oxygen isotope record from the water column into the seabed is difficult due to low Pi concentrations and small amounts of marine porewaters available for analysis. We obtained porewater profiles of Pi oxygen isotopes using a refined protocol based on the original micro-extraction designed by Colman (2002). This refined and customized method allows the conversion of ultra-low quantities (0.5 - 1 µmol) of porewater Pi to silver phosphate (Ag3PO4) for routine analysis by mass spectrometry. A combination of magnesium hydroxide co-precipitation with ion exchange resin treatment steps is used to remove dissolved organic matter, anions, and cations from the sample before precipitating Ag3PO4. Samples as low as 200 µg were analyzed in a continuous flow isotope ratio mass spectrometer setup. Tests with external and laboratory internal standards validated the preservation of the original phosphate oxygen isotope signature (d18OP) during micro extraction. Porewater data on d18OP has been obtained from two sediment cores of the Moroccan margin. The d18OP values are in a range of +19.49 to +27.30 per mill. We apply a simple isotope mass balance model to disentangle processes contributing to benthic P cycling and find evidence for Pi regeneration outbalancing microbial demand in the upper sediment layers. This highlights the great potential of using d18OP to study microbial processes in the subseafloor and at the sediment water interface.
Resumo:
These data are from a field experiment conducted in a shallow alluvial aquifer along the Colorado River in Rifle, Colorado, USA. In this experiment, bicarbonate-promoted uranium desorption and acetate amendment were combined and compared to an acetate amendment-only experiment in the same experimental plot. Data include names and location data for boreholes, geochemical data for all the boreholes between June 1, 2010 and January 1, 2011, microarray data provided as signal to noise ratio (SNR) for individual microarray probes, microarray data provided as signal to noise ratio (SNR) by Genus.