613 resultados para epidote
Resumo:
The purpose of this paper is to report the heavy mineral content of Miocene to Pleistocene sequences drilled during Ocean Drilling Program Leg 174A on the New Jersey Shelf. Sandy intervals recovered from Holes 1071A, 1071F, 1072A, and 1073A were sampled for heavy mineral analysis. Because of the low core recovery of the sandy parts of the succession, sampling has been incomplete. In spite of the resulting restriction and because of major variations in heavy mineral assemblages, eight distinct heavy mineral associations could be defined. The data presented thus considerably extend the present knowledge on the lithology of the stratigraphic record as described by Austin, Christie-Blick, Malone, et al. (1998). In this chapter the heavy mineral associations and their assignment to particular sequences are described.
Resumo:
We have performed quantitative X-ray diffraction (qXRD) analysis of 157 grab or core-top samples from the western Nordic Seas between (WNS) ~57°-75°N and 5° to 45° W. The RockJock Vs6 analysis includes non-clay (20) and clay (10) mineral species in the <2 mm size fraction that sum to 100 weight %. The data matrix was reduced to 9 and 6 variables respectively by excluding minerals with low weight% and by grouping into larger groups, such as the alkali and plagioclase feldspars. Because of its potential dual origins calcite was placed outside of the sum. We initially hypothesized that a combination of regional bedrock outcrops and transport associated with drift-ice, meltwater plumes, and bottom currents would result in 6 clusters defined by "similar" mineral compositions. The hypothesis was tested by use of a fuzzy k-mean clustering algorithm and key minerals were identified by step-wise Discriminant Function Analysis. Key minerals in defining the clusters include quartz, pyroxene, muscovite, and amphibole. With 5 clusters, 87.5% of the observations are correctly classified. The geographic distributions of the five k-mean clusters compares reasonably well with the original hypothesis. The close spatial relationship between bedrock geology and discrete cluster membership stresses the importance of this variable at both the WNS-scale and at a more local scale in NE Greenland.
Resumo:
The acid insoluble coarse fractions of the glacial-interglacial sequence of Hole 552A in the NE Atlantic are made up of varying amounts of terrigenous detritus, biogenic silica, and pyroclastic material, principally volcanic glass. Volcanic ash content varies significantly over the entire interval, and the three North Atlantic ash horizons of Ruddiman and Glover (1972) can be recognized satisfactorily. The terrigenous detritus is of mixed metamorphic-basaltic type and probably originated on the Greenland landmass
Resumo:
Five heavy mineral associations occur in the Paleocene and Eocene sediments recovered during Leg 81 of the Deep Sea Drilling Project (DSDP) in the SW Rockall area. Association 1, consisting of augite, iddingsite, and olivine, was derived from the basaltic rocks of the northern part of the Rockall Plateau. Association 2 consists of epidote group minerals, including piedmontite, and amphiboles of actinolite, actinolitic hornblende, and magnesio-hornblende compositions, and was derived from the metamorphic basement of south Greenland. Association 3 comprises garnet, augite, apatite, and edenitic and pargasitic amphiboles and has a provenance in the southern Rockall Plateau. Associations 4 (garnet, apatite, edenitic/pargasitic amphiboles) and 5 (garnet, apatite) are intrastratal solution derivatives of Association 3, with successive removal of first pyroxene and then amphibole with increasing depth of burial. Throughout the SW Rockall Plateau area there is a significant change in the spectrum of the above assemblages in the lower part of the Eocene. This change has been noted at Sites 403, 404, 553, and 555 and is defined by the last appearance of Association 2. This level therefore marks the cessation of sediment supply from southern Greenland and is the result of the final separation of Rockall and Greenland immediately prior to magnetic Anomaly 24.
Resumo:
This paper presents results of investigations of unusual carbonate formations found in bottom sediments of the South China Sea shelf. These sediments were sampled from a deep fracture found by geophysical methods. According to gas-geochemical data there are high concentrations of methane, hydrogen and carbon dioxide in bottom waters of this area. The carbonate formations were defined as calcium siderite or siderodot by roentgenostructural, microprobe, atomic absorption, and thermal analyses, asawellas infrared spectroscopy. Formation of this mineral results from carbon dioxide and methane flows through bottom sediments.
Resumo:
Distribution patterns, petrography, whole-rock and mineral chemistry, and shape and fabric data are described for the most representative basement lithologies occurring as clasts (granule to bolder grain-size class) from the 625 m deep CRP-2/2A drillcore. A major change in the distribution pattern of the clast types occurs at c. 310 mbsf., with granitoid-dominated clasts above and mainly dolerite clasts below; moreover, compositional and modal data suggest a further division into seven main detrital assemblages or petrofacies. In spite of this variability, most granitoid pebbles consist of either pink or grey biotite±hornblende monzogranites. Other less common and ubiquitous lithologies include biotite syenogranite, biotite-hornblende granodiorite, tonalite, monzogranitic porphyries (very common below 310 mbsf), microgranite, and subordinately, monzogabbro, Ca-silicate rocks, biotite-clinozoisite schist and biotite orthogneiss (restricted to the pre-Pliocene strata). The ubiquitous occurrence of biotite±hornblende monzogranite pebbles in both the Quaternary-Pliocene and Miocene-Oligocene sections, apparently reflects the dominance of these lithologies in the onshore basement, and particularly in the Cambro-Ordovician Granite Harbour Igneous Complex which forms the most extensive outcrop in southern Victoria Land. The petrographical features of the other CRP-2/2A pebble lithologies are consistent with a supply dominantly from areas of the Transantarctic Mountains facing the CRP-2/2A site, and they thus provide further evidence of a local provenance for the supply of basement clasts to the CRP-2/2A sedimentary strata.
Resumo:
Based on grain-size, mineralogical and chemical analyses of samples collected in cruises of R/V Ekolog (Institute of Northern Water Problems, Karelian Research Centre of RAS, Petrozavodsk) in 2001 and 2003 regularities of chemical element distribution in surface layer bottom sediments of the Kem' River Estuary in the White Sea were studied. For some toxic elements labile and refractory forms were determined. Correlation analysis was carried out and ratios Me/Al were calculated as proxies of terrigenous contribution. Distribution of such elements as Fe, Mn, Zn, Cr, Ti was revealed to be influenced by natural factors, mainly by grain size composition of bottom sediments. These metals have a tendency for accumulation in fine-grained sediments with elevated organic carbon contents. Distribution of Ni is different from one of Fe, Mn, Zn, Cr, Ti. An assumption was made that these distinctions were caused by anthropogenic influence.
Resumo:
Basalts in two holes spaced 200 meters apart at DSDP Site 456 in the Mariana Trough both show a downward sequence of nonoxidative and oxidative zones of alteration, each 10 to 15 meters thick, overlying fresh basalts. Basalts in the nonoxidative zone have been extensively chloritized and have vein and vesicle fillings of quartz, opal, chlorite, calcite, and pyrite. Minor sulfides are chalcopyrite and digenite. Basalts in the oxidative zone have abundant smectites and iron hydroxides and are variably enriched in K, Rb, and Ba, unlike the nonoxidative basalts above them. We propose that the oxidative zone was a zone of mixing between high-temperature, reduced hydrothermal fluids moving horizontally beneath impermeable sediments at the top of the pillowed basement lavas and cold, oxygenated seawater in interpillow voids deeper in the basement. Recrystallized vitric tuffs immediately above the basalts containing authigenic quartz and wairakite, as well as occurrence of chlorite, epidote, and chalcopyrite in the basalts, suggest temperatures of alteration in excess of 200°C.
Resumo:
Stockwork-like metal sulfide mineralizations were found at 910-928 m below seafloor (BSF) in the pillow/dike transition zone of Hole 504B. This is the same interval where most physical properties of the 5.9-m.y.-old crust of the Costa Rica Rift change from those characteristic of Layer 2B to those of Layer 2C. The pillow lavas, breccias, and veins of the stockwork-like zone were studied by transmitted and reflected light microscopy, X-ray diffraction, and electron microprobe analysis. Bulk rock oxygen isotopic analyses as well as isolated mineral oxygen and sulfur isotopic analyses and fluid inclusion measurements were carried out. A complex alteration history was reconstructed that includes three generations of fissures, each followed by precipitation of characteristic hydrothermal mineral parageneses: (1) Minor and local deposition of quartz occurred on fissure walls; adjacent wall rocks were silicified, followed by formation of chlorite and minor pyrite I in the veins, whereas albite, sphene, chlorite and chlorite-expandable clay mixtures, actinolite, and pyrite replaced igneous phases in the host rocks. The hydrothermal fluids responsible for this first stage were probably partially reacted seawater, and their temperatures were at least 200-250° C. (2) Fissures filled during the first stage were reopened and new cracks formed. They were filled with quartz, minor chlorite and chlorite-expandable clay mixtures, traces of epidote, common pyrite, sphalerite, chalcopyrite, and minor galena. During the second stage, hydrothermal fluids were relatively evolved metal- and Si-rich solutions whose temperatures ranged from 230 to 340° C. The fluctuating chemical composition and temperature of the solutions produced a complex depositional sequence of sulfides in the veins: chalcopyrite I, ± Fe-rich sphalerite, chalcopyrite II ("disease"), Fe-poor sphalerite, chalcopyrite III, galena, and pyrite II. (3) During the last stage, zeolites and Mg-poor calcite filled up the remaining spaces and newly formed cracks and replaced the host rock plagioclase. Analcite and stilbite were first to form in veins, possibly at temperatures below 200°C; analcite and earlier quartz were replaced by laumontite at 250°C, whereas calcite formation temperature ranged from 135 to 220°C. The last stage hydrothermal fluids were depleted in Mg and enriched in Ca and 18O compared to seawater and contained a mantle carbon component. This complex alteration history paralleling a complex mineral paragenesis can be interpreted as the result of a relatively long-term evolution of a hydrothermal system with superimposed shorter term fluctuations in solution temperature and composition. Hydrothermal activity probably began close to the axis of the Costa Rica Rift with the overall cooling of the system and multiple fracturing stages due to movement of the crust away from the axis and/or cooling of a magmatic heat source.