99 resultados para eddy covariance tower
Resumo:
The summer water balance of a typical Siberian polygonal tundra catchment is investigated in order to identify the spatial and temporal dynamics of its main hydrological processes. The results show that, besides precipitation and evapotranspiration, lateral flow considerably influences the site-specific hydrological conditions. The prominent microtopography of the polygonal tundra strongly controls lateral flow and storage behaviour of the investigated catchment. Intact rims of low-centred polygons build hydrological barriers, which release storage water later in summer than polygons with degraded rims and troughs above degraded ice wedges. The barrier function of rims is strongly controlled by soil thaw, which opens new subsurface flow paths and increases subsurface hydrological connectivity. Therefore, soil thaw dynamics determine the magnitude and timing of subsurface outflow and the redistribution of storage within the catchment. Hydraulic conductivities in the elevated polygonal rims sharply decrease with the transition from organic to mineral layers. This interface causes a rapid shallow subsurface drainage of rainwater towards the depressed polygon centres and troughs. The re-release of storage water from the centres through deeper and less conductive layers helps maintain a high water table in the surface drainage network of troughs throughout the summer.
Resumo:
For the qualitative description of surface properties like vegetation cover or land-water-ratio of Samoylov Island as well as for the evaluation of fetch homogeneity considerations of the eddy covariance measurements and for the up-scaling of chamber flux measurements, a detailed surface classification of the island at the sub-polygonal scale is necessary. However, up to know only grey-scale Corona satellite images from the 1960s with a resolution of 2 x 2 m and recent multi-spectral LandSat images with a resolution of 30 x 30 m were available for this region. Both are not useable for the desired classification because of missing spectral information and inadequate resolution, respectively. During the Lena 2003 expedition, a survey of the island by air photography was carried out in order to obtain images for surface classification. The photographs were taken from a helicopter on 10.07.2002, using a Canon EOS100 reflex camera, a Soligor 19-23 mm lens and colour slide film. The height from which the photographs were taken was approximately 600 meters. Due to limited flight time, not all the area of the island could be photographed and some regions could only be photographed with a slanted view. As a result, the images are of a varying quality and resolution. In Potsdam, after processing the films were scanned using a Nikon LS-2000 scanner at maximal resolution setting. This resulted in a ground resolution of the scanned images of approximately 0.3x0.3 m. The images were subsequently geo-referenced using the ENVI software and a referenced Corona image dating from 18.07.1964 (Spott, 2003). Geo-referencing was only possible for the Holocene river terrace areas; the floodplain regions in the western part of the island could not be referenced due to the lack of ground reference points. In Figure 3.7-1, the aerial view of Samoylov Island composed of the geo-referenced images is shown. Further work is necessary for the classification and interpretation of the images. If possible, air photography surveys will be carried out during future expeditions in order to determine changes in surface pattern and composition.
Resumo:
Samoylov Island is centrally located within the Lena River Delta at 72° N, 126° E and lies within the Siberian zone of continuous permafrost. The landscape on Samoylov Island consists mainly of late Holocene river terraces with polygonal tundra, ponds and lakes, and an active floodplain. The island has been the focus of numerous multidisciplinary studies since 1993, which have focused on climate, land cover, ecology, hydrology, permafrost and limnology. This paper aims to provide a framework for future studies by describing the characteristics of the island's meteorological parameters (temperature, radiation and snow cover), soil temperature, and soil moisture. The land surface characteristics have been described using high resolution aerial images in combination with data from ground-based observations. Of note is that deeper permafrost temperatures have increased between 0.3 to 1.3 °C over the last five years. However, no clear warming of air and active layer temperatures is detected since 1998, though winter air temperatures during recent years have not been as cold as in earlier years.
Resumo:
Geostrophic surface velocities can be derived from the gradients of the mean dynamic topography-the difference between the mean sea surface and the geoid. Therefore, independently observed mean dynamic topography data are valuable input parameters and constraints for ocean circulation models. For a successful fit to observational dynamic topography data, not only the mean dynamic topography on the particular ocean model grid is required, but also information about its inverse covariance matrix. The calculation of the mean dynamic topography from satellite-based gravity field models and altimetric sea surface height measurements, however, is not straightforward. For this purpose, we previously developed an integrated approach to combining these two different observation groups in a consistent way without using the common filter approaches (Becker et al. in J Geodyn 59(60):99-110, 2012, doi:10.1016/j.jog.2011.07.0069; Becker in Konsistente Kombination von Schwerefeld, Altimetrie und hydrographischen Daten zur Modellierung der dynamischen Ozeantopographie, 2012, http://nbn-resolving.de/nbn:de:hbz:5n-29199). Within this combination method, the full spectral range of the observations is considered. Further, it allows the direct determination of the normal equations (i.e., the inverse of the error covariance matrix) of the mean dynamic topography on arbitrary grids, which is one of the requirements for ocean data assimilation. In this paper, we report progress through selection and improved processing of altimetric data sets. We focus on the preprocessing steps of along-track altimetry data from Jason-1 and Envisat to obtain a mean sea surface profile. During this procedure, a rigorous variance propagation is accomplished, so that, for the first time, the full covariance matrix of the mean sea surface is available. The combination of the mean profile and a combined GRACE/GOCE gravity field model yields a mean dynamic topography model for the North Atlantic Ocean that is characterized by a defined set of assumptions. We show that including the geodetically derived mean dynamic topography with the full error structure in a 3D stationary inverse ocean model improves modeled oceanographic features over previous estimates.