79 resultados para calibrations
Resumo:
Recent work has provided useful Mg/Ca to water temperature calibrations for shallow-dwelling planktonic foraminifer species. Globorotalia truncatulinoides (right coiling (R)) is a deep-dwelling species that can serve as a source of information about the temporal variability in the water characteristics of the thermocline. We present a temperature calibration for the Mg/Ca in the shell of G. truncatulinoides (R) and examine some of the practical issues associated with evaluating the usefulness of the technique. The Mg/Ca in the primary and the secondary calcite of individual G. truncatulinoides (R) correlates exponentially with water column temperatures, showing a change of ~10% in the Mg/Ca per 1°C (R**2 = 0.92). A limited comparison with plankton tow samples demonstrates that the average Mg/Ca temperature was offset +1°C from the average temperature calculated using the d18O calibration of O'Neil et al. (1969, doi:10.1063/1.1671982), and the Mg/Ca temperatures have a range similar to the ?18O temperatures. Comparisons of the [Mg] in the core top samples to water depth of deposition indicates that dissolution does not alter the measured value of Mg in the primary calcite.
Resumo:
We improved upper Eocene to Oligocene deep-sea chronostratigraphic control by integrating isotope (87Sr/86Sr, delta18O, delta13C) stratigraphy and magnetostratigraphy. Most previous attempts to establish the timing of isotope fluctuations have relied upon biostratigraphic age estimates which have uncertainties of 0.5 to over 4.0 m.y. Deep Sea Drilling Project (DSDP) Site 522 contains the best available upper Eocene to Oligocene magnetostratigraphic record which allows first-order correlations of isotope records (87Sr/86Sr, delta18O, delta13C) to the Geomagnetic Polarity Time Scale (GPTS). Empirical calibrations between the 87Sr/86Sr of foraminifera and magnetochronology at Site 522 allow more precise correlation of ,unknown' samples with the GPTS. For example, shallow water and high-latitude sections may be tied into the deep-sea record. Sr-isotope stratigraphic resolution for the latest Eocene to Oligocene is approximately 2 m.y.