48 resultados para biological equivalent dose
Resumo:
ESR-spectra of foraminifera in arctic sediment cores display the [CO2]- -signal (g=2.0006). Research on the thermal behaviour of the [CO2]- -signal shows that both natural and artificial irradiation generates a precursor and a thermal unstable component of the [CO2]- -signal. The precursor can be transfered to the stable radical, and unstable radicals can be removed by heating. The signal-change by heating depends on the irradiation dose. Because of the varying response on thermal treatment, the dose-response curves show systematic differences depending on the applied procedure (single- or multi-aliquot method with or without heating). A model for the description of the [CO2]- -signal-change is presented. The combination of two exponential saturation functions seems to be an adequate analytical description of the dose-response curve of the [CO2]- -signal in foraminifera. Due to the limited thermal stability this signal can be used for dating foraminifera with ages up to about 190 ka.
Resumo:
The Pyoza River area in the Arkhangelsk district exposes sedimentary sequences suitable for study of the interaction between consecutive Valdaian ice sheets in Northern Russia. Lithostratigraphic investigations combined with luminescence dating have revealed new evidence on the Late Pleistocene history of the area. Overlying glacigenic deposits of the Moscowian (Saalian) glaciation marine deposits previously confined to three separate transgression phases have all been connected to the Mikulinian (Eemian) interglacial. Early Valdaian (E. Weichselian) proglacial, lacustrine and fluvial deposits indicate glaciation to the east or north and consequently glacier damming and meltwater run-off in the Pyoza area around 90-110 ka BP. Interstadial conditions with forest-steppe tundra vegetation and lacustrine and fluvial deposition prevailed at the end of the Early Valdaian around 75-95 ka BP. A terrestrial-based glaciation from easterly uplands reached the Pyoza area at the Early to Middle Valdaian transition around 65-75 ka BP and deposited glaciofluvial strata and subglacial till (Yolkino Till). During deglaciation, laterally extensive glaciolacustrine sediments were deposited in ice-dammed lakes in the early Middle Valdaian around 55-75 ka BP. The Barents-Kara Sea ice sheet deposited the Viryuga Till on the lower Pyoza from northerly directions. The ice sheet formed the Pyoza marginal moraines, which can be correlated with the Markhida moraines further east, and proglacial lacustrine deposition persisted in the area during the first part of the Middle Valdaian. Glacio-isostatic uplift caused erosion followed by pedogenesis and the formation of a deflation horizon in the Middle Valdaian. Widely dispersed periglacial river plains were formed during the Late Valdaian around 10-20 ka BP. Thus, the evidence of a terrestrial-based ice sheet from easterly uplands in the Pyoza area suggests that local piedmont glaciers situated in highlands such as the Timan Ridge or the Urals could have developed into larger, regionally confined ice sheets. Two phases of ice damming and development of proglacial lakes occurred during the Early and Middle Valdaian. The region did not experience glaciation during the Late Valdaian.