783 resultados para benthic faunal species
Resumo:
Paleobathymetric assessments of fossil foraminiferal faunas play a significant role in the analysis of the paleogeographic, sedimentary, and tectonic histories of New Zealand's Neogene marine sedimentary basins. At depths >100 m, these assessments often have large uncertainties. This study, aimed at improving the precision of paleodepth assessments, documents the present-day distribution of deep-sea foraminifera (>63 µm) in 66 samples of seafloor sediment at 90-700 m water depth (outer shelf to mid-abyssal), east of New Zealand. One hundred and thirty-nine of the 465 recorded species of benthic foraminifera are new records for the New Zealand region. Characters of the foraminiferal faunas which appear to provide the most useful information for estimating paleobathymetry are, in decreasing order of reliability: relative abundance of common benthic species; benthic species associations; upper depth limits of key benthic species; and relative abundance of planktic foraminifera. R mode cluster analysis on the quantitative census data of the 58 most abundant species of benthic foraminifera produced six species associations within three higher level clusters: (1) calcareous species most abundant at mid-bathyal to outer shelf depths (<1000 m); (2) calcareous species most abundant at mid-bathyal and greater depths (>600 m); (3) agglutinated species mostly occurring at deep abyssal depths (>3000 m). A detrended correspondence analysis ordination plot exhibits a strong relationship between these species associations and bathymetry. This is manifest in the bathymetric ranges of the relative abundance peaks of many of the common benthic species (e.g., Abditodentrix pseudothalmanni 500-2800 m, Bolivina robusta 200-650 m, Bulimina marginata f. marginata 20-600 m, B. marginata f. aculeata 400-3000 m, Cassidulina norvangi 1000-4500 m, Epistominella exigua 1000-4700 m, and Trifarina angulosa 10-650 m), which should prove useful in paleobathymetric estimates. The upper depth limits of 28 benthic foraminiferal species (e.g., Fursenkoina complanata 200 m, Bulimina truncana 450 m, Melonis affinis 550 m, Eggerella bradyi 750 m, and Cassidulina norvangi 1000 m) have potential to improve the precision of paleobathymetric estimates based initially on the total faunal composition. The planktic percentage of foraminiferal tests increases from outer shelf to upper abyssal depths followed by a rapid decline within the foraminiferal lysocline (below c. 3600 m). A planktic percentage <50% is suggestive of shelf depths, and >50% is suggestive of bathyal or abyssal depths above the CCD. In the abyssal zone there is dramatic taphonomic loss of most agglutinated tests (except some textulariids) at burial depths of 0.1-0.2 m, which negates the potential usefulness of these taxa in paleobathymetric assessments.
Resumo:
This paper is based on Santonian-Campanian sediments of Ocean Drilling Program Sites 1257 (2951 mbsl) and 1259 (2353 mbsl) from Demerara Rise (Leg 207, western tropical Atlantic, off Surinam). According to its position, Demerara Rise should have been influenced by the early opening of the Equatorial Atlantic Gateway and the establishment of a bottom-water connection between the central and South Atlantic Oceans during the Late Cretaceous. The investigated benthic foraminiferal faunas demonstrate strong fluctuations in bottom-water oxygenation and organic-matter flux to the sea-floor. The Santonian-earliest Campanian interval is characterised by laminated black shales without benthic foraminifera in the lowermost part, followed by an increasing number of benthic foraminifera. These are indicative of anoxic to dysoxic bottom waters, high organic-matter fluxes and a position within the oxygen minimum zone. At the shallower Site 1259, benthic foraminifera occurred earlier (Santonian) than at the deeper Site 1257 (Early Campanian). This suggests that the shallower site was characterised by fluctuations in the oxygen minimum zone and that a re-oxygenation of the sea-floor started considerably earlier at shallower water-depths. We speculate that this re-oxygenation was related to the ongoing opening of the Equatorial Atlantic Gateway. A condensed glauconitic chalk interval of Early Campanian age (Nannofossil Zone CC18 of Sissingh) overlies the laminated shales at both sites. This interval contains benthic foraminiferal faunas reflecting increasing bottom-water oxygenation and reduced organic-matter flux. This glauconitic chalk is strongly condensed and contains most of the Lower and mid-Campanian. Benthic foraminiferal species indicative of well-oxygenated and more oligotrophic environments characterise the overlying mid- to Upper Campanian nannofossil chalk. During deposition of the nannofossil chalk, a permanent deep-water connection between the central and South Atlantic Oceans is proposed, leading to ventilated and well-oxygenated bottom waters. If this speculation is true, the establishment of a permanent deep-water connection between the central and South Atlantic Oceans terminated Oceanic Anoxic Event 3 "black shale" formation in the central and South Atlantic marginal basins during the Early Campanian (Nannofossil Zone CC18) and led to well-oxygenated bottom waters in the entire Atlantic Ocean during the Late Campanian (at least from Nannofossil Zone CC22 onwards).
Resumo:
Twenty percent (19 genera, 95 species) of cosmopolitan, deep-sea (500-4000 m), benthic foraminiferal species became extinct during the late Pliocene-Middle Pleistocene (3-0.12 Ma), with the peak of extinctions (76 species) occurring during the mid-Pleistocene Climate Transition (MPT, 1.2-0.55 Ma). One whole family (Stilostomellidae, 30 species) was wiped out, and a second (Pleurostomellidae, 29 species) was decimated with just one species possibly surviving through to the present. Our studies at 21 deep-sea core sites show widespread pulsed declines in abundance and diversity of the extinction group species during more extreme glacials, with partial interglacial recoveries. These declines started in the late Pliocene in southern sourced deep water masses (Antarctic Bottom Water, Circumpolar Deep Water) and extending into intermediate waters (Antarctic Intermediate Water, North Atlantic Deep Water) in the MPT, with the youngest declines in sites farthest downstream from high-latitude source areas for intermediate waters. We infer that the unusual apertural types that were targeted by this extinction period were adaptations for a specific kind of food source and that it was probably the demise of this microbial food that resulted in the foraminiferal extinctions. We hypothesize that it may have been increased cold and oxygenation of the southern sourced deep water masses that impacted on this deep water microbial food source during major late Pliocene and Early Pleistocene glacials when Antarctic ice was substantially expanded. The food source in intermediate water was not impacted until major glacials in the MPT when there were significant expansion of polar sea ice in both hemispheres and major changes in the source areas, temperature, and oxygenation of global intermediate waters.
Resumo:
Instrumental monitoring of the climate at high northern latitudes has documented the ongoing warming of the last few decades. Climate modelling has also demonstrated that the global warming signal will be amplified in the polar region. Such temperature increases would have important implications on the ecosystem and biota of the Barents Sea. This study therefore aims to reconstruct the climatic changes of the Barents Sea based on benthic foraminifera over approximately the last 1400 years at the decadal to sub-decadal scale. Oxygen and carbon isotope analysis and benthic foraminiferal species counts indicate an overall warming trend of approximately 2.6°C through the 1400-year record. In addition, the well-documented cooling period equating to the 'Little Ice Age' is evident between c. 1650 and 1850. Most notably, a series of highly fluctuating temperatures are observed over the last century. An increase of 1.5°C is shown across this period. Thus for the first time we are able to demonstrate that the recent Arctic warming is also reflected in the oceanic micro-fauna.
Resumo:
Benthic foraminifers from Site 652, Site 653 (Hole 653A), and Site 654 of Leg 107 (Tyrrhenian Sea, Western Mediterranean), which penetrated with more or less good recovery the Plio-Pleistocene stratigraphic interval, were studied in a total of 699 close-spaced samples. A total number of 269 species have been classified and their quantitative distribution in each sample is reported. The benthic foraminifers assemblage is more diversified in Site 654, less diversified in Site 652. Less than a half of the benthic foraminifers species listed from Plio-Pleistocene Italian land sections are present in the coeval deep-sea Tyrrhenian record, in which shallow water species are missing and Nodosarids are poorly represented. A very few species have comparable stratigraphic distribution in the three deep-sea sequences and in Italian land sections when compared against calcareous plankton biostratigraphy. In the same three sites, the first appearance levels of several species are younger and younger, and last appearance levels are earlier and earlier from Site 654 to Site 653 and Site 652. Five biostratigraphic events, biochronologically evaluated and occurring at the same level in the deepsea Tyrrhenian record and in several land sections, have been selected as zonal boundaries of the proposed benthic foraminifers biostratigraphic scheme. The Plio-Pleistocene interval has been subdivided into four biozones and one subzone, recognizable both in the deep-sea and land-based sequences. The Cibicidoides (?) italicus assemblage zone stretches from the base of the Pliocene to the extinction level of the zonal marker, biochronologically evaluated at 2.9 Ma. The Cibicidoides robertsonianus interval zone stretches from the Cibicidoides (?) italicus extinction level to the Pliocene Mediterranean FO of Gyroidinoides altiformis, evaluated at 2.4 Ma. The Gyroidinoides altiformis interval zone stretches from the Mediterranean Pliocene FO of the zonal marker to the appearance level of Articulina tubulosa, evaluated at 1.62 Ma. The Articulina tubulosa assemblage zone stretches from the appearance level of the zonal marker to the Recent. In the Articulina tubulosa biozone, the Hyalinea baltica subzone is proposed. The appearance level of Hyalinea baltica is evaluated at 1.35 Ma, well above the Plio-Pleistocene boundary as defined in the Vrica stratotype section.
Resumo:
Benthic foraminifers were studied from lower Paleocene through upper Oligocene sections from Sites 747 and 748. The composition of the benthic foraminifer species suggests a middle to lower bathyal (600-2000 m) paleodepth during the Neogene and a probable upper abyssal (2000-3000 m) paleodepth during the Paleocene at Site 747. Site 748 is thought to have remained at middle to lower bathyal paleodepths throughout the Cenozoic. Principal component analysis distinguished four major benthic foraminifer assemblages: (1) a Paleocene Stensioina beccariiformis assemblage at Sites 747 and 748, (2) an early Eocene Nuttallides truempyi assemblage at lower bathyal Site 747, (3) an early through middle Eocene Stilostomella-Lenticulina assemblage at middle bathyal Site 748, and (4) a latest Eocene through Oligocene Cibicidoides-Astrononion pusillum assemblage at both sites. Major benthic foraminifer changes, as indicated by the principal components and first and last appearances, occurred at or close to the Paleocene/Eocene boundary, and in the late Eocene close to the middle/late Eocene boundary.
Resumo:
This study tests the hypothesis that the late Miocene to early Pliocene constriction and closure of the Central American Seaway (CAS), connecting the tropical Atlantic and East quatorial Pacific (EEP), caused a decrease in productivity in the Caribbean, due to decreased coastal upwelling and an end to the connection with high-productivity tropical Pacific waters. The present study compared paleoceanographic proxies for the interval between 8.3 and 2.5 Ma in 47 samples from south Caribbean ODP Site 999 with published data on EEP DSDP Site 503. Proxies for Site 999 include the relative abundance of benthic foraminiferal species representing bottom current velocity and the flux of organic matter to the sea floor, the ratio of infaunal/epifaunal benthic foraminiferal species and benthic foraminifer accumulation rates (BFARs). In addition, we calculated % resistant planktic foraminifers species and used the previously published % sand fraction and benthic carbon isotope values from Site 999. During early shoaling of the Isthmus (8.3-7.9 Ma) the Caribbean was under mesotrophic conditions, with little ventilation of bottom waters and low current velocity. The pre-closure interval (7.6-4.2 Ma) saw enhanced seasonal input of phytodetritus with even more reduced ventilation, and enhanced dissolution between 6.8 and 4.8 Ma. During the post-closure interval (4.2-2.5 Ma) in the Caribbean, paleoproductivity decreased, current velocity was reduced, and ventilation improved, while the seasonality of phytodetrital input was reduced dramatically, coinciding with the establishment of the Atlantic-Pacific salinity contrast at 4.2 Ma. Our data support the hypothesis that late Miocene constriction of the CAS at 7.9 Ma and its closure at 4.2 Ma caused a gradual decrease in paleoproductivity in the Caribbean, consistent with decreased current velocity and seasonality of the phytodetrital input.
Resumo:
The ocean plays a major role in the global carbon cycle, and attempts to reconstruct past changes in the marine carbonate system are increasing. The speciation of dissolved uranium is sensitive to variations in carbonate system parameters, and previous studies have shown that this is recorded in the uranium-to-calcium ratio (U/Ca) of the calcite shells of planktonic foraminifera. Here we test whether U/Ca ratios of deep-sea benthic foraminifera are equally suited as an indicator of the carbonate system. We compare U/Ca in two common benthic foraminifer species (Planulina wuellerstorfi and Cibicidoides mundulus) from South Atlantic core top samples with the calcite saturation state (Delta [CO3**2-] = [CO3**2-]in situ - [CO3**2-]sat) of the ambient seawater and find significant negative correlations for both species. Compared with planktonic foraminifera, the sensitivity of U/Ca in benthic foraminifera to changes in Delta [CO3**2-] is about 1 order of magnitude higher. Although Delta [CO3**2-] exerts the dominant control on the average foraminiferal U/Ca, the intertest and intratest variability indicates the presence of additional factors forcing U/Ca.
Resumo:
Sediments recovered at lower bathyal ODP Site 1049 on Blake Nose (Northwestern Atlantic) offer an opportunity to study environmental changes at the Cretaceous/Paleogene (K/P) boundary relatively close to the Chicxulub impact structure on the Yucatan peninsula, Mexico. In Hole 1049C, the boundary is located at the base of a 9-cm-thick layer with abundant spherules, considered to be impact ejecta. Uppermost Maastrichtian oozes below, and lowermost Danian pelagic oozes above the spherulebed contain well-preserved bathyal benthic foraminifera. The spherule-bed itself, in contrast, contains a mixture of shallow (neritic) and deeper (bathyal) species, and specimens vary strongly in preservation. This assemblage was probably formed by reworking and down-slope transport triggered by the K/P impact. Across the spherule-bed (i.e., the K/P boundary) only ~7% of benthic foraminiferal species became extinct, similar to the low extinction rates of benthic foraminifera worldwide. Quantitative analysis of benthic foraminiferal assemblages and morphogroups in the >63-µm size fraction indicates a relatively eutrophic, stable environment during the latest Maastrichtian, interrupted by a sudden decrease in the food supply to the benthos at the K/P boundary and a decrease in diversity of the faunas, followed by a stepped recovery during the earliest Danian. The recovery was probably linked to the gradual recovery of surface-dwelling primary producers.
Resumo:
Data on the composition of benthic foraminiferal faunas at Deep Sea Drilling Project Site 575 in the eastern equatorial Pacific Ocean were combined with benthic and planktonic carbon- and oxygen-isotope records and CaCO3 data. Changes in the composition of the benthic foraminiferal faunas at Site 575 predated the middle Miocene period of growth of the Antarctic ice cap and cooling of the deep ocean waters by about 2 m.y., and thus were not caused by this cooling (as has been proposed). The benthic faunal changes may have been caused by increased variability in corrosivity of the bottom waters, possibly resulting from enhanced productivity in the surface waters.
Resumo:
The presence of gas hydrates on the Blake Ridge diapir, northeastern Atlantic Ocean, offers an opportunity to study the impact of methane seepage on the ecology and geochemistry of benthic foraminifera in the late Holocene. Three push cores, covering a time span of ~ 1000 yrs, were retrieved from three distinct microhabitats at the top of the diapir at a water depth of ~ 2150 m: (i) sediments away from seepage (control core), (ii) sediments overlain by clusters of methanotrophic and thiotrophic bivalves, and (iii) chemoautotrophic microbial mats. The foraminiferal assemblages at the two seep sites are marked by a reduction in benthic foraminiferal species diversity, coupled with a near-absence of agglutinated species. However, an opportunistic population rise in CH4- or H2S-tolerant calcareous species (e.g., Globocassidulina subglobosa and Cassidulina laevigata) that utilize the abundant trophic resources at the seeps has led to an increase in the overall assemblage density there. The delta18O and delta13C values of three species of benthic foraminifera - Gyroidinoides laevigatus, Globocassidulina subglobosa, and Uvigerina peregrina - and the planktonic species Globorotalia menardii were acquired from all three cores. The benthic species from methane seeps yield delta13C values of 0.1 to - 4.2 (per mil VPDB), that are distinctly more 13C-depleted relative to the delta13C of 0.4 to - 1.0 (per mil VPDB) at the control (off seep) site. The species from a mussel-bed site exhibit more negative delta13C values than those from microbial mats, possibly reflecting different food sources and higher rate of anaerobic oxidation of methane. The positive delta13C values in the paired planktonic species suggest that authigenic carbonate precipitation did not overprint the observed 13C depletions. Hence the probable cause of negative delta13C of benthic foraminifera is primary calcification from Dissolved Inorganic Carbon (DIC) containing mixed carbon fractions from (a) highly 13C-depleted, microbially-oxidized methane and (b) a seawater source.
Resumo:
The structure and distribution of the macrobenthic communities were studied in the southwestern Kara Sea. The material was collected in Baidaratskaya Bay in July 2007 and in a section running westward of the Yamal Peninsula in September 2007. The depths of the sampling stations ranged from 5 to 25 m in the Baidaratskaya Bay area and between 16 and 46 m in the Yamal section. A total of 212 benthic invertebrate species were recorded. In both areas, Bivalvia was the group with the highest biomass (54.88 g/m**2 in the Yamal section and 59.71 g/m**2 in the Baidaratskaya Bay area), while polychaetes were the group with the highest number of species (45 in the Yamal section and 64 the Baidaratskaya Bay area). Three major macrozoobenthic communities were recognized: the Astarte borealis community (20-46 m, the deepest sampling stations in both areas); the 'medium-depth' community (10-20 m, extremely mosaic, usually dominated by Serripes groenlandicus); and the Nephtys longosetosa community (depth smaller than 10 m, characterized by low biomass and the absence of large bivalves and echinoderms). The western Yamal shallow-water communities were shown to be generally similar to those of Baidaratskaya Bay. The comparison of these results with those of the benthos censuses performed in 1927-1945, 1975, and 1993 showed that the benthic communities in the southwestern Kara Sea remained relatively stable during the second half of the 20th century and the early 21st century.
Resumo:
The stable isotopic composition of two planktonic foraminifer species (Globigerinoides sacculifer and Neogloboquadrina dutertrei) and two benthic foraminifer species (Cibicidoides wuellerstorfi and Uvigerina peregrina) was measured at sub-orbital resolution through the marine isotope stages (MISs) 10, 11, and 12 (345-460 ka) at Site 1056 on the Blake-Bahama Outer Ridge. Planktonic foraminifers were counted for the interval 405-450 ka at 2-4-kyr resolution. Site 1056 (32°29'N, 76°20'W) is located on the continental slope (water depth: 2167 m) beneath the Gulf Stream. The average rate of sediment accumulation through the interval is 11.4 cm/kyr, but sediment accumulation is much more rapid during glacial intervals (15-17 cm/kyr). The decline in percent carbonate during glacial intervals, and its rise during interglacials, indicates that the increased sediment supply is of terrigenous origin. Low carbonate values and low benthic delta13C, which are both associated with a weak Western Boundary Undercurrent and low North Atlantic Deep Water production, persist for 6 kyr after the benthic delta18O record indicates that ice volume has begun to decrease. Recovery of carbonate and benthic delta13C values is abrupt and rapid. Millennial-scale variation (~3-4 kyr) is apparent in the glacial intervals of the planktonic delta18O records and is more pronounced in a Delta delta18O record, which represents the temperature range in the photic zone. Semi-precessional (10-12-kyr) cycles are apparent in the planktonic deltadelta13C record. The millennial-scale cycles are largely caused by an increase in G. sacculifer delta18O and represent surface warming. They are interpreted as representing periodic increases in westward intensification of the gyre. The semi-precessional cycles are driven by changes in the N. dutertrei delta13C and represent fluctuations in the Gulf Stream itself and therefore likely have a tropical origin. Planktonic foraminifer census counts did not show an expected response to one of the largest glacial/interglacial transitions of the late Pleistocene. The most obvious change was an increase in faunal diversity during MIS 12.2, the interval of maximum delta18O values. This suggests that cool slope water and warm subtropical gyre water penetrated a more sluggish Gulf Stream with greater frequency at this time. The millennial-scale maxima in the Delta delta18O record are accompanied by decreases in diversity, which is consistent with the interpretation of surface warming during these events.
Resumo:
Mid-Miocene pelagic sedimentary sections can be correlated using intermediate and high resolution oxygen and carbon isotopic records of benthic foraminifera. Precision of a few tens of thousands of years is readily achievable at sites with high sedimentation rates, for example, Deep Sea Drilling Project sites 289 and 574. The mid-Miocene carbon isotope records are characterized by an interval of high d13C values between 17 and 13.5 Ma (the Monterey Excursion of Vincent and Berger 1985) upon which are superimposed a series of periodic or quasi-periodic fluctuations in d13C values. These fluctuations have a period of approximately 440 kyr, suggestive of the 413 kyr cycle predicted by Milankovitch theory. Vincent and Berger proposed that the Monterey Excursion was the result of increased organic carbon burial in continental margins sediments. The increased d13C values (called 13C maxima) superimposed on the generally high mid-Miocene signal coincide with increases in d18O values suggesting that periods of cooling and/or ice buildup were associated with exceptionally rapid burial of organic carbon and lowered atmospheric CO2 levels. It is likely that during the Monterey Excursion the ocean/atmosphere system became progressively more sensitive to small changes in insolation, ultimately leading to major cooling of deep water and expansion of continental ice. We have assigned an absolute chronology, based on biostratigraphic and magneto-biostratigraphic datum levels, to the isotope stratigraphy and have used that chronology to correlate unconformities, seismic reflectors, carbonate minima, and dissolution intervals. Intervals of sediment containing 13C maxima are usually better preserved than the overlying and underlying sediments, indicating that the d13C values of TCO2 in deep water and the corrosiveness of seawater are inversely correlated. This again suggests that the 13C maxima were associated with rapid burial of organic carbon and reduced levels of atmospheric CO2. The absolute chronology we have assigned to the isotopic record indicates that the major mid-Miocene deepwater cooling/ice volume expansion took 2 m.y. and was not abrupt as had been reported previously. The cooling appears abrupt at many sites because the interval is characterized by a number of dissolution intervals. The cooling was not monotonic, and the 2 m.y. interval included an episode of especially rapid cooling as well as a brief return to warmer conditions before the final phase of the cooling period. The increase in d18O values of benthic foraminifera between 14.9 and 12.9 Ma was greatest at deeper water sites and at sites closest to Antarctica. The data suggest that the d18O value of seawater increased by no more than about 1.1 per mil during this interval and that the remainder of the change in benthic d18O values resulted from cooling in Antarctic regions of deepwater formation. Equatorial planktonic foraminifera from sites 237 and 289 exhibit a series of 0.4 per mil steplike increases in d13C values. Only one of these increases in planktonic d13C is correlated with any of the features in the mid-Miocene benthic carbon isotope record.