56 resultados para atlantic multidecadal oscillation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

During a four weeks anchoring station of R.V. ,,Meteor" on the equator at 30° W longitude, vertical profiles of wind, temperature, and humidity were measured by means of a meteorological buoy carrying a mast of 10 m height. After eliminating periods of instrumental failure, 18 days are available for the investigation of the diurnal variations of the meteorological parameters and 9 days for the investigation of the vertical heat fluxes. The diurnal variations of the above mentioned quantities are caused essentially by two periodic processes: the 24-hourly changing solar energy supply and the 12-hourly oscillation of air pressure, which both originate in the daily rotation of the earth. While the temperature of the water and of the near water layers of the air show a 24 hours period in their diurnal course, the wind speed, as a consequence of the pressure wave, has a 12 hours period, which is also observable in evaporation and, consequently, in the water vapor content of the surface layer. Concerning the temperature, a weak dependence of the daily amplitude on height was determined. Further investigation of the profiles yields relations between the vertical gradients of wind, temperature, and water vapor and the wind speed, the difference between sea and air of temperature and water vapor, respectively, thus giving a contribution to the problem of parameterizing the vertical fluxes. Mean profile coefficients for the encountered stabilities, which were slightly unstable, are presented, and correction terms are given due to the fact that the conditions at the very surface are not sufficiently represented by measuring in a water depth of 20 cm and assuming water vapor saturation. This is especially true for the water vapor content, where the relation between the gradient and the air-sea difference suggests a reduction of relative humidity to appr. 96% at the very surface, if the gradients are high. This effect may result in an overestimation of the water vapor flux, if a ,,bulk"-formula is used. Finally sensible and latent heat fluxes are computed by means of a gradient-formula. The influence of stability on the transfer process is taken into account. As the air-sea temperature differences are small, sensible heat plays no important role in that region, but latent heat shows several interesting features. Within the measuring period of 18 days, a regular variation by a factor of ten is observed. Unperiodic short term variations are superposed by periodic diurnal variations. The mean diurnal course shows a 12-hours period caused by the vertical wind speed gradient superposed by a 24-hours period due to the changing stabilities. Mean values within the measuring period are 276 ly/day for latent heat and 9.41y/day for sensible heat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mar del Plata Canyon is located at the continental margin off northern Argentina in a key intermediate and deep-water oceanographic setting. In this region, strong contour currents shape the continental margin by eroding, transporting and depositing sediments. These currents generate various depositional and erosive features which together are described as a Contourite Depositional System (CDS). The Mar del Plata Canyon intersects the CDS, and does not have any obvious connection to the shelf or to an onshore sediment source. Here we present the sedimentary processes that act in the canyon and show that continuous Holocene sedimentation is related to intermediate-water current activity. The Holocene deposits in the canyon are strongly bioturbated and consist mainly of the terrigenous "sortable silt" fraction (10-63 µm) without primary structures, similarly to drift deposits. We propose that the Mar del Plata Canyon interacts with an intermediate-depth nepheloid layer generated by the northward-flowing Antarctic Intermediate Water (AAIW). This interaction results in rapid and continuous deposition of coarse silt sediments inside the canyon with an average sedimentation rate of 160 cm/kyr during the Holocene. We conclude that the presence of the Mar del Plata Canyon decreases the transport capacity of AAIW, in particular of its deepest portion that is associated with the nepheloid layer, which in turn generates a change in the contourite deposition pattern around the canyon. Since sedimentation processes in the Mar del Plata Canyon indicate a response to changes of AAIW contour-current strength related to Late Glacial/Holocene variability, the sediments deposited within the canyon are a great climate archive for paleoceanographic reconstructions. Moreover, an additional involvement of (hemi) pelagic sediments indicates episodic productivity events in response to changes in upper ocean circulation possibly associated with Holocene changes in intensity of El Niño/Southern Oscillation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distribution of the mean oceanic oxygen concentration results from a balance between ventilation and consumption. In the eastern tropical Pacific and Atlantic, this balance creates extended oxygen minimum zones (OMZ) at intermediate depth. Here, we analyze hydrographic and velocity data from shipboard and moored observations, which were taken along the 23°W meridian cutting through the Tropical North East Atlantic (TNEA) OMZ, to study the distribution and generation of oxygen variability. By applying the extended Osborn-Cox model, the respective role of mesoscale stirring and diapycnal mixing in producing enhanced oxygen variability, found at the southern and upper boundary of the OMZ, is quantified. From the well-ventilated equatorial region toward the OMZ core a northward eddy-driven oxygen flux is observed whose divergence corresponds to an oxygen supply of about 2.4 µmol kg-1 year-1 at the OMZ core depth. Above the OMZ core, mesoscale eddies act to redistribute low- and high-oxygen waters associated with westward and eastward currents, respectively. Here, absolute values of the local oxygen supply >10 mmol kg-1 year-1 are found, likely balanced by mean zonal advection. Combining our results with recent studies, a refined oxygen budget for the TNEA OMZ is derived. Eddy-driven meridional oxygen supply contributes more than 50 % of the supply required to balance the estimated oxygen consumption. The oxygen tendency in the OMZ, as given by the multidecadal oxygen decline, is maximum slightly above the OMZ core and represents a substantial imbalance of the oxygen budget reaching about 20 % of the magnitude of the eddy-driven oxygen supply.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean observations carried out in the framework of the Collaborative Research Center 754 (SFB 754) "Climate-Biogeochemistry Interactions in the Tropical Ocean" are used to study (1) the structure of tropical oxygen minimum zones (OMZs), (2) the processes that contribute to the oxygen budget, and (3) long-term changes in the oxygen distribution. The OMZ of the eastern tropical North Atlantic (ETNA), located between the well-ventilated subtropical gyre and the equatorial oxygen maximum, is composed of a deep OMZ at about 400 m depth with its core region centred at about 20° W, 10° N and a shallow OMZ at about 100 m depth with lowest oxygen concentrations in proximity to the coastal upwelling region off Mauritania and Senegal. The oxygen budget of the deep OMZ is given by oxygen consumption mainly balanced by the oxygen supply due to meridional eddy fluxes (about 60%) and vertical mixing (about 20%, locally up to 30%). Advection by zonal jets is crucial for the establishment of the equatorial oxygen maximum. In the latitude range of the deep OMZ, it dominates the oxygen supply in the upper 300 to 400 m and generates the intermediate oxygen maximum between deep and shallow OMZs. Water mass ages from transient tracers indicate substantially older water masses in the core of the deep OMZ (about 120-180 years) compared to regions north and south of it. The deoxygenation of the ETNA OMZ during recent decades suggests a substantial imbalance in the oxygen budget: about 10% of the oxygen consumption during that period was not balanced by ventilation. Long-term oxygen observations show variability on interannual, decadal and multidecadal time scales that can partly be attributed to circulation changes. In comparison to the ETNA OMZ the eastern tropical South Pacific OMZ shows a similar structure including an equatorial oxygen maximum driven by zonal advection, but overall much lower oxygen concentrations approaching zero in extended regions. As the shape of the OMZs is set by ocean circulation, the widespread misrepresentation of the intermediate circulation in ocean circulation models substantially contributes to their oxygen bias, which might have significant impacts on predictions of future oxygen levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temporal and spatial patterns in eastern North Atlantic sea-surface temperatures (SST) were reconstructed for marine isotope stage (MIS) 11c using a submeridional transect of five sediment cores. The SST reconstructions are based on planktic foraminiferal abundances and alkenone indices, and are supported by benthic and planktic stable isotope measurements, as well as by ice-rafted debris content in polar and middle latitudes. Additionally, the larger-scale dynamics of the precipitation regime over northern Africa and the western Mediterranean region was evaluated from iron concentrations in marine sediments off NW Africa and planktic d13C in combination with analysis of planktic foraminiferal abundances down to the species level in the Mediterranean Sea. Compared to the modern situation, it is revealed that during entire MIS 11c sensu stricto (ss), i.e., between 420 and 398 ka according to our age models, a cold SST anomaly in the Nordic seas co-existed with a warm SST anomaly in the middle latitudes and the subtropics, resulting in steeper meridional SST gradients than during the Holocene. Such a SST pattern correlates well with a prevalence of a negative mode of the modern North Atlantic Oscillation. We suggest that our scenario might partly explain the longer duration of wet conditions in the northern Africa during MIS 11c compared to the Holocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Available overwash records from coastal barrier systems document significant variability in North Atlantic hurricane activity during the late Holocene. The same climate forcings that may have controlled cyclone activity over this interval (e.g., the West African Monsoon, El Niño-Southern Oscillation (ENSO)) show abrupt changes around 6000 yrs B.P., but most coastal sedimentary records do not span this time period. Establishing longer records is essential for understanding mid-Holocene patterns of storminess and their climatic drivers, which will lead to better forecasting of how climate change over the next century may affect tropical cyclone frequency and intensity. Storms are thought to be an important mechanism for transporting coarse sediment from shallow carbonate platforms to the deep-sea, and bank-edge sediments may offer an unexplored archive of long-term hurricane activity. Here, we develop this new approach, reconstructing more than 7000 years of North Atlantic hurricane variability using coarse-grained deposits in sediment cores from the leeward margin of the Great Bahama Bank. High energy event layers within the resulting archive are (1) broadly correlated throughout an offbank transect of multi-cores, (2) closely matched with historic hurricane events, and (3) synchronous with previous intervals of heightened North Atlantic hurricane activity in overwash reconstructions from Puerto Rico and elsewhere in the Bahamas. Lower storm frequency prior to 4400 yrs B.P. in our records suggests that precession and increased NH summer insolation may have greatly limited hurricane potential intensity, outweighing weakened ENSO and a stronger West African Monsoon-factors thought to be favorable for hurricane development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze five high-resolution time series spanning the last 1.65 m.y.: benthic foraminiferal delta18O and delta13O, percent CaCO3, and estimated sea surface temperature (SST) at North Atlantic Deep Sea Drilling Project site 607 and percent CaCO3 at site 609. Each record is a multicore composite verified for continuity by splicing among multiple holes. These climatic indices portray changes in northern hemisphere ice sheet size and in North Atlantic surface and deep circulation. By tuning obliquity and precession components in the delta18O record to orbital variations, we have devised a time scale (TP607) for the entire Pleistocene that agrees in age with all K/Ar-dated magnetic reversals to within 1.5%. The Brunhes time scale is taken from Imbrie et al. [1984], except for differences near the stage 17/16 transition (0.70 to 0.64 Ma). All indicators show a similar evolution from the Matuyama to the Brunhes chrons: orbital eccentricity and precession responses increased in amplitude; those at orbital obliquity decreased. The change in dominance from obliquity to eccentricity occurred over several hundred thousand years, with fastest changes around 0.7 to 0.6 Ma. The coherent, in-phase responses of delta18O, delta13O, CaCO3 and SST at these rhythms indicate that northern hemisphere ice volume changes have controlled most of the North Atlantic surface-ocean and deep-ocean responses for the last 1.6 m.y. The delta13O, percent CaCO3, and SST records at site 607 also show prominent changes at low frequencies, including a prominent long-wavelength oscillation toward glacial conditions that is centered between 0.9 and 0.6 Ma. These changes appear to be associated neither with orbital forcing nor with changes in ice volume.