720 resultados para Water mass variations


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sea-ice ocean interaction processes are of significant influence on the water mass formation in the Weddell gyre. On the basis of data obtained between 1984 and 2008 from eight repeat hydrographic sections, moored instruments and profiling floats in the Weddell gyre on the Greenwich meridian - almost all of them collected with R.V. Polarstern - we identified variations in the properties of the Winter Water and the sea ice draft. In the Winter Water the salinity was relatively low throughout the 1990s (with a minimum in 1992) and a maximum was observed in 2003. Observations of sea ice draft by moored upward looking sonars are available from 1996 onwards. In the southern part of the transect they display variations on a decadal time scale with a minimum in sea-ice thickness in 1998 and an increase since then. Salinity variations in the Winter Water layer cannot be explained only by variations in sea-ice formation and variable entrainment of underlying Warm Deep Water, but lateral advection of water and sea ice needs to be taken into account as well. Potential sources are melt water from the ice shelves in the western Weddell Sea or transport of water of low salinity entering the Weddell gyre from the east. Accompanying variations of the properties of Warm Deep Water are discussed in detail in a companion paper (Fahrbach et al., 2011, doi:10.1016/j.dsr2.2011.06.007).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Variations of 137Cs concentration in the southeastern Baltic Sea were investigated over the period 1997-2000, i.e. in 11-14 years after the Chernobyl Nuclear Power Plant accident. Rate of "self-cleaning" proved to be very slow. Some results obtained in 1999 were almost the same as those measured after the accident, in 1986. Calculated results showed that "Chernobyl" caesium-137 would be "cleaned" in the Baltic Sea by 2020-2022. In 2000 average concentration had to be about 50-60 Bq/m**3. Sometimes mentioned concentrations were observed. In some cases higher concentrations averaging from 67 to 80 Bq/m**3 were registered in the southeastern Baltic Sea in 1999; and in some samples 137Cs concentrations were very high. They varied from 110 to 212 Bq/m**3. No steady correlation was observed between 137Cs concentration, salinity and temperature in surface water of the area. Distribution of radionuclide concentration sometimes depends on direction of water mass transport. Abnormally high concentrations of 137Cs in the southeastern Baltic Sea may result from additional radioactive waste discharge.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Foraminiferal assemblages were studied in northern Barents Sea core ASV 880 along with oxygen and carbon isotope measurements in planktonic (N. pachyderma sin.) and benthic (E. clavatum) species. AMS C-14 measurements performed on molluscs Yoldiella spp. show that this core provides a detailed and undisturbed record of Holocene climatic changes over the last 10000 calendar years. Surface and deep waters were very cold (<0°C) at the beginning of the Holocene. C. reniforme dominated the highly diverse benthic foraminiferal assemblage. From 10 to 7.8 cal. ka BP, a warming trend culminated in a temperature optimum, which developed between 7.8 and 6.8 cal. ka BP. During this optimum, the input of Atlantic water to the Barents Sea reached its maximum. The Atlantic water mass invaded the whole Franz Victoria Trough and was present from subsurface to the bottom. No bottom water, which would form through rejection of brine during winter, was present at the core depth (388 m). The water stratification was therefore greatly reduced as compared to the present. An increase in percentage of I. helenae/norcrossi points to long seasonal ice-free conditions. The temperature optimum ended rather abruptly, with the return of cold polar waters into the trough within a few centuries. This was accompanied by a dramatic reduction of the abundance of C. reniforme. During the upper Holocene, the more opportunistic species E. clavatum became progressively dominant and the water column was more stratified. Deep water in Franz Victoria Trough contained a significant amount of cold Barents Sea bottom water as it does today, while subsurface water warmed progressively until about 3.7 cal. ka BP and reached temperatures similar to those of today. These long-term climatic changes were cut by several cold events of short duration, in particular one in the middle of the temperature optimum and another, which coincides most probably with the 8.2 ka BP cold event. Both long- and short-term climatic changes in the Barents Sea are associated with changes in the flow of Atlantic waters and the oceanic conveyor belt.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A record based on counts of the relative abundance of the dominant calcareous nannofossil taxa Coccolithus pelagicus and Reticulofenestra spp. in sediments recovered from Ocean Drilling Program Hole 747A (Kerguelen Plateau, Southern Indian Ocean) is established in this paper. This record (17 m.y. long) virtually spans the entire Miocene. Broad, steplike variations in the abundance of C. pelagicus range between 0% and 96%. Based on these variations, five stratigraphic units characterized by high abundance in C. pelagicus are delineated. We suggest that these variations are caused by water-mass movements (such as the north/south shifting of a front). This pronounced signal is compared with paleoceanographic events revealed by isotopic (d18O and d13C) studies. The five defined units are tentatively correlated to well-known global isotopic events. In particular, Units A and D correlate respectively with the Oligocene/Miocene boundary glaciation and the middle Miocene cooling event. Time-series analysis indicates the presence of the three main periodic components of the eccentricity of the Earth's orbit. A 200-k.y. cycle is also present. The stratigraphic and paleoceanographic significance of this record is discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plankton pump samples and plankton tows (size fractions between 0.04 mm and 1.01 mm) from the eastern North Atlantic Ocean contain the following shell- and skeleton-producing planktonic and nektonic organisms, which can be fossilized in the sediments: diatoms, radiolarians, foraminifers, pteropods, heteropods, larvae of benthic gastropods and bivalves, ostracods, and fish. The abundance of these components has been mapped quantitatively in the eastern North Atlantic surface waters in October - December 1971. More ash (after ignition of the organic matter, consisting mostly of these components) per cubic meter of water is found close to land masses (continents and islands) and above shallow submarine elevations than in the open ocean. Preferred biotops of planktonic diatoms in the region described are temperate shallow water and tropical coastal upwelling areas. Radiolarians rarely occur close to the continent, but are abundant in pelagic warm water masses, even near islands. Foraminifers are similar to the radiolarians, rarer in the coastal water mass of the continent than in the open ocean or off oceanic islands. Their abundance is highest outside the upwelling area off NW Africa. Molluscs generally outnumber planktonic foraminifers, implying that the carbonate cycle of the ocean might be influenced considerably by these animals. The molluscs include heteropods, pteropods, and larvae of benthic bivalves and gastropods. Larvae of benthic molluscs occur more frequently close to continental and island margins and above submarine shoals (in this case mostly guyots) than in the open ocean. Their size increases, but they decrease in number with increasing distance from their area of origin. Ostracods and fish have only been found in small numbers concentrated off NW Africa. All of the above-mentioned components occur in higher abundances in the surface water than in subsurface waters. They are closely related to the hydrography of the sampled water masses (here defined through temperature measurements). Relatively warm water masses of the southeastern branches of the Gulf Stream system transport subtropical and southern temperate species to the Bay of Biscay, relatively cool water masses of the Portugal and Canary Currents carry transitional faunal elements along the NW African coast southwards to tropical regions. These mix in the northwest African upwelling area with tropical faunal elements which are generally assumed to live in the subsurface water masses and which probably have been transported northwards to this area by a subsurface counter current. The faunas typical for tropical surface water masses are not only reduced due to the tongue of cool water extending southwards along the coast, but they are also removed from the coastal zone by the upwelling subsurface water masses carrying their own shell and skeleton assemblages. Tropical water masses contain much more shelland skeleton-producing plankters than subtropical and temperate ones. The climatic conditions found at different latitudes control the development and intensity of a separate continental coastal water mass with its own plankton assemblages. Extent of this water mass and steepness of gradients between the pelagic and coastal environment limit the occurrence of pelagic plankton close to the continental coast. A similar water mass in only weakly developed off oceanic islands.