439 resultados para Uso de fármacos off-label
Resumo:
In 1970 a large deposit of ferromanganese nodules was discovered on the floor of the Indian Ocean southwest of Cape Leeuwin by the research vessel USNS Eltanin. This discovery, which was based largely on bottom photographs from about 20 stations, was discussed by Frakes (1975) and Kennett and Watkins (1975, 1976). The photographs suggest that the deposit spreads, nearly continuously, over 900 000km^2, and cores showed that the nodules are essentially confined to the sediment surface. Kennett and Watkins (op. cit.) pointed to the abundance of ripple and scour marks and current-formed lineations on the present surface, and of extensive disconformities in the cores, as evidence of strong present and past bottom currents in the region. They suggested that the current action had resulted in very low sedimentation rates, which had allowed the nodule field, named by them (1976) the 'Southeast Indian Ocean Manganese Pavement', to develop. In early 1976 the authors used the research vessel HMAS Diamantina for a 10-day cruise in the region to sample the nodules in order to study their chemistry and mineralogy. During the cruise 9 stations were occupied, 8 of them successfully (Figure 1), and about 2000 nodules were recovered from the sea bed. The apparatus used was a light box dredge on the ships hydrowire, which had a breaking strain of about one tonne. Although an attempt was made to reoccupy Eltanin photographic stations, it should be noted that positioning was by celestial navigation, so errors of up to 10 km are possible.
Resumo:
We tested the ability of a small dynamic penetrometer, Nimrod, to infer geotechnical properties of sediment mixtures in the inner shelf. The penetrometer is light and easy to operate, and its operation by scuba divers ensures a greater degree of precision than ship-based penetrometer deployments. We have studied selected positions along a sorted bedform (~ 100 m wide) on the continental shelf off the Coromandel Peninsula close to Tairua, North Island of New Zealand, and additionally took sediment samples at the exact positions of penetrometer impact, also by scuba divers. The derived dynamic penetrometer signatures (i) measured deceleration of the probe and estimated quasi-static bearing capacity as a measure of sediment strength, (ii) reflected changes in grain-size distribution ranging from very fine to very coarse sands, and (iii) revealed the uppermost seafloor stratification (top layer 2-6 cm) potentially being an indicator for sediment dynamics. In this manner, the device proved to be suitable for spatially fine-scaled surveys using divers' support and might deliver complementary information about sediment dynamics, in this case sorted-bedform maintenance.
Resumo:
A brief review of various relationships connecting seismofocal zone and volcanic belts within the Kurile island-arc system is represented. Possibilities of manifestation of the submarine volcanic activity and associated relief of the hydrothermal systems on the Pacific shelf of the South Kamchatka are considered. We propose to consider Malko-Petropavlovsk zone of transverse dislocations as seismogenerating one. The phenomenon of ultrafast deformations.
Resumo:
Composition, grain-size distribution, and areal extent of Recent sediments from the Northern Adriatic Sea along the Istrian coast have been studied. Thirty one stations in four sections vertical to the coast were investigated; for comparison 58 samples from five small bays were also analyzed. Biogenic carbonate sediments are deposited on the shallow North Adriatic shelf off the Istrian coast. Only at a greater distance from the coast are these carbonate sediments being mixed with siliceous material brought in by the Alpine rivers Po, Adige, and Brenta. Graphical analysis of grain-size distribution curves shows a sediment composition of normally three, and only in the most seaward area, of four major constituents. Constituent 1 represents the washed-in terrestrial material of clay size (Terra Rossa) from the Istrian coastal area. Constituent 2 consists of fine to medium sand. Constituent 3 contains the heterogeneous biogenic material. Crushing by organisms and by sediment eaters reduces the coarse biogenic material into small pieces generating constituent 2. Between these two constituents there is a dynamic equilibrium. Depending upon where the equilibrium is, between the extremes of production and crushing, the resulting constituent 2 is finer or coarser. Constituent 4 is composed of the fine sandy material from the Alpine rivers. In the most seaward area constituents 2 and 4 are mixed. The total carbonate content of the samples depends on the distance from the coast. In the near coastal area in high energy environments, the carbonate content is about 80 %. At a distance of 2 to 3 km from the coast there is a carbonate minimum because of the higher rate of sedimentation of clay-sized terrestrial, noncarbonate material at extremely low energy environments. In an area between 5 and 20 km off the coast, the carbonate content is about 75 %. More than 20 km from the shore, the carbonate content diminishes rapidly to values of about 30 % through mixing with siliceous material from the Alpine rivers. The carbonate content of the individual fractions increases with increasing grain-size to a maximum of about 90 % within the coarse sand fractions. Beyond 20 km from the coast the samples show a carbonate minimum of about 13 % within the sand-size classes from 1.5 to 0.7 zeta¬? through mixing with siliceous material from the alpine rivers. By means of grain-size distribution and carbonate content, four sediment zones parallel to the coast were separated. Genetically they are closely connected with the zonation of the benthic fauna. Two cores show a characteristic vertical distribution of the sediment. The surface zone is inversely graded, that means the coarse fractions are at the top and the fine fractions are at the bottom. This is the effect of crushing of the biogenic material produced at the surface by predatory organisms and by sediment eaters. lt is proposed that at a depth of about 30 cm a chemical solution process begins which leads to diminution of the original sediment from a fine to medium sand to a silt. The carbonate content decreases from about 75 % at the surface to 65 % at a depth of 100 cm. The increase of the noncarbonate components by 10 % corresponds to a decrease in the initial amount of sediment (CaC03=75 %) by roughly 30 % through solution. With increasing depth the carbonate content of the individual fractions becomes more and more uniform. At the surface the variation is from 30 % to 90 %, at the bottom it varies only between 50 % and 75 %. Comparable investigations of small-bay sediments showed a c1ear dependence of sediment/faunal zonation from the energy of the environment. The investigations show that the composition and three-dimensional distribution of the Istrian coastal sediments can not be predicted only from one or a few measurable factors. Sedimentation and syngenetic changes must be considered as a complex interaction between external factors and the actions of producing and destroying organisms that are in dynamic equilibrium. The results obtained from investigations of these recent sediments may be of value for interpreting fossil sediments only with strong limitations.
Resumo:
Benthic foraminiferal assemblage compositions and sedimentary geochemical parameters were analyzed in two radiocarbon dated sediment cores from the upwelling area off NW Africa at 12°N, to reconstruct productivity changes during the last 31 kyr. High-latitude cold events and variations in low-latitude summer insolation influenced humidity, wind systems, and the position of the tropical rain belt over this time period. This in turn caused changes in intensity and seasonality of primary productivity off the southern Northwest African continental margin. High accumulation rates of benthic foraminifera, carbonate, and organic carbon during times of north Atlantic melt water events Heinrich 2 (25.4 to 24.3 kyr BP) and 1 (16.8 to 15.8 kyr BP) indicate high productivity. Dominance of infaunal benthic foraminiferal species and high numbers of deep infaunal specimens during that time indicate a strong and sustained supply of refractory organic matter reworked from the upper slope and shelf. A more southerly position of the tropical rainbelt and the Northeast trade wind belt during Heinrich 2 and 1 may have enhanced wind intensity and almost permanent upwelling, driving this scenario. A phytodetritus-related benthic fauna indicates seasonally pulsed input of labile organic matter but generally low year-round productivity during the Last Glacial Maximum (23 to 18 kyr BP). The tropical rainbelt is more expanded to the North than during Heinrich Events, and relatively weak NE trade winds resulted in seasonal and weak upwelling, thus lower productivity. High productivity characterized by a seasonally high input of labile organic matter, is indicated for times of orbital forced warming, such as the African Humid Period (9.8 to 7 kyr BP). An intensified African monsoon during boreal summer and the northernmost position of the tropical rainbelt within the last 31 kyr resulted in enhanced river discharge from the northward-extended drainage area (or river basin) initiating intense phytoplankton blooms. In the late Holocene (4 to 0 kyr BP) strong carbonate dissolution may have been caused by even more enhanced organic matter fluxes to the sea floor. Increasing aridity on the continent and stronger NE trade winds induced intensive, seasonal coastal upwelling.
Resumo:
Surface and thermocline conditions of the eastern tropical Indian Ocean were reconstructed through the past glacial-interglacial cycle by using Mg/Ca and alkenone-paleothermometry, stable oxygen isotopes of calcite and seawater, and terrigenous fraction performed on sediment core GeoB 10038-4 off SW Sumatra (~6°S, 103°E, 1819 m water depth). Results show that annual mean surface and thermocline temperatures varied differently and independently, and suggest that surface temperatures have been responding to southern high-latitude climate, whereas the more variable thermocline temperatures were remotely controlled by changes in the thermocline temperatures of the North Indian Ocean. Except for glacial terminations, salinity proxies indicate that changing intensities of the boreal summer monsoon did not considerably affect annual mean conditions off Sumatra during the past 133,000 years. Our results do not show a glacial-interglacial pattern in the thermocline conditions and reject a linear response of the tropical Indian Ocean thermocline to mid- and high-latitude climate change. Alkenone-based surface temperature estimates varied in line with the terrigenous fraction of the sediment and the East Asian winter monsoon proxy records at the precession band suggestive of monsoon (sea level) to be the dominant control on alkenone temperatures in the eastern tropical Indian Ocean on sub-orbital (glacial-interglacial) timescales.
Resumo:
Stratigraphic assemblages of Quaternary through early Eocene benthic foraminifers were recovered among 10 Peru margin drill sites. Various hiatuses and intervals barren in foraminifers characterize the sections, but numerous samples contain abundant, well-preserved benthic foraminifers. Bathymetry of the extant species and California-based estimates of the paleobathymetry of the extinct species permit recognition of Quaternary sea-level fluctuations between shelf and upper bathyal depths that produced vertical migrations of oxygenated and low-oxygen habitats at the six shallow sites. Assemblages from lower-slope sites at about 9° and 11°S indicate a general subsidence of the continental margin from shelf or upper bathyal depths in Eocene time to the present lower bathyal depths. Data from 11°S suggest a major part of this subsidence occurred in late Oligocene to early Miocene time. Downslope-transported shelf specimens, particularly the small biserial species, Bolivina costata and B. vaughani, are major contributors to these lower bathyal assemblages from the middle Miocene through Quaternary time.
Resumo:
Planktonic foraminifers were studied from 213 samples collected during Leg 112 at 10 sites located on the continental shelf and slope off Peru. Because planktonic foraminifers occur discontinuously downcore, detailed biostratigraphic zonation was not defined. However, it was possible to distinguish early and middle Eocene, early and late Miocene, Pliocene, and Pleistocene sediments on the basis of the planktonic foraminifers. The oldest sediments of Zone P6 of early Eocene age were obtained from the basal part of Hole 688E, which was penetrated to 779.0 m below seafloor (bsf). A biosiliceous facies of the area predominates above the N6-N7 zonal interval of early Miocene age. All sites are within the present coastal upwelling area off Peru, and many of the late Pliocene and Pleistocene assemblages are similar to those that are characteristic of modern upwelling areas. The core samples differ, however, by having a predominance of cold-water elements, such as Neogloboquadrina incompta and N. pachyderma. Warm-water species are prevalent at some horizons in the cores, suggesting shifts of the coastal upwelling centers or warmer climatic events.