433 resultados para U-th-pb
Resumo:
Many studies argue, based partly on Pb isotopic evidence, that recycled, subducted slabs reside in the mantle source of ocean island basalts (OIB) (Hofmann and White, 1982, doi:10.1016/0012-821X(82)90161-3; Weaver, 1991 doi:10.1016/0012-821X(91)90217-6; Lassiter, and Hauri, 1998, doi:10.1016/S0012-821X(98)00240-4). Such models, however, have remained largely untested against actual subduction zone inputs, due to the scarcity of comprehensive measurements of both radioactive parents (Th and U) and radiogenic daughter (Pb) in altered oceanic crust (AOC). Here, we discuss new, comprehensive measurements of U, Th, and Pb concentrations in the oldest AOC, ODP Site 801, and consider the effect of subducting this crust on the long-term Pb isotope evolution of the mantle. The upper 500 m of AOC at Site 801 shows >4-fold enrichment in U over pristine glass during seafloor alteration, but no net change to Pb or Th. Without subduction zone processing, ancient AOC would evolve to low 208Pb/206Pb compositions unobserved in the modern mantle (Hart and Staudigel, 1989 [Isotopic characterization and identification of recycled components, in: Crust/Mantle Recycling at Convergence Zones, Eds. S.R. Hart, L. Gqlen, NATO ASI Series. Series C: Mathematical and Physical Sciences 258, pp. 15-28, D. Reidel Publishing Company, Dordrecht-Boston, 1989]). Subduction, however, drives U-Th-Pb fractionation as AOC dehydrates in the earth's interior. Pacific arcs define mixing trends requiring 8-fold enrichment in Pb over U in AOC-derived fluid. A mass balance across the Mariana subduction zone shows that 44-75% of Pb but <10% of U is lost from AOC to the arc, and a further 10-23% of Pb and 19-40% of U is lost to the back-arc. Pb is lost shallow and U deep from subducted AOC, which may be a consequence of the stability of phases binding these elements during seafloor alteration: U in carbonate and Pb in sulfides. The upper end of these recycling estimates, which reflect maximum arc and back-arc growth rates, remove enough Pb and U from the slab to enable it to evolve rapidly (<<0.5 Ga) to sources suitable to explain the 208Pb/206Pb isotopic array of OIB, although these conditions fail to simultaneously satisfy the 207Pb/206Pb system. Lower growth rates would require additional U loss (29%) at depths beyond the zones of arc and back-arc magmagenesis, which would decrease upper mantle kappa (232Th/238U) over time, consistent with one solution to the "kappa conundrum" (Elliott et al., 1999, doi:10.1016/S0012-821X(99)00077-1). The net effects of alteration (doubling of l [238U/204Pb]) and subduction (doubling of omega [232Th/204Pb]) are sufficient to create the Pb isotopic signatures of oceanic basalts.
Resumo:
Zircons from the oldest magmatic and metasedimentary rocks in the Podolia domain of the Ukrainian shield were studied and dated by the U-Pb method on a NORDSIM secondary-ion mass spectrometer. Age of zircon cores in enderbite gneisses sampled in the Kazachii Yar and Odessa quarries on the opposite banks of the Yuzhnyi Bug River reaches 3790 Ma. Cores of terrigenous zircons in quartzites from the Odessa quarry as well as in garnet gneisses from the Zaval'e graphite quarry have age within 3650-3750 Ma. Zircon rims record two metamorphic events around 2750-2850 Ma and 1900-2000 Ma. Extremely low U content in zircons of the second age group indicates conditions of the granulite facies metamorphism in Paleoproterozoic within the Podolia domain. Measured data on orthorocks (enderbite-gneiss) and metasedimentary rocks unambiguously suggest existence of the ancient Paleoarchean crust in the Podolia (Dniester-Bug) domain of the Ukrainian shield. They contribute in our knowledge of scales of formation and geochemical features of the primordial crust.
Resumo:
Boron and Pb isotopic compositions together with B-U-Th-Pb concentrations were determined for Pacific and Indian mantle-type mid-ocean ridge basalts (MORB) obtained from shallow drill holes near the Australian Antarctic Discordance (AAD). Boron contents in the altered samples range from 29.7 to 69.6 ppm and are extremely enriched relative to fresh MORB glass with 0.4-0.6 ppm B. Similarly the d11B values range from 5.5? to 15.9? in the altered basalts and require interaction with a d11B enriched fluid similar to seawater ~39.5? and/or boron isotope fractionation during the formation of secondary clays. Positive correlations between B concentrations and other chemical indices of alteration such as H2O CO2, K2O, P2O5, U and 87Sr/86Sr indicate that B is progressively enriched in the basalts as they become more altered. Interestingly, d11B shows the largest isotopic shift to +16? in the least altered basalts, followed by a continual decrease to +5-6? in the most altered basalts. These observations may indicate a change from an early seawater dominated fluid towards a sediment-dominated fluid as a result of an increase in sediment cover with increasing age of the seafloor. The progression from heavy d11B towards lighter values with increasing degrees of alteration may also reflect increased formation of clay minerals (e.g., saponite). A comparison of 238U/204Pb and 206Pb/204Pb in fresh glass and variably altered basalt from Site 1160B shows extreme variations that are caused by secondary U enrichment during low temperature alteration. Modeling of the U-Pb isotope system confirms that some alteration events occurred early in the 21.5 Ma history of these rocks, even though a significant second pulse of alteration happened at ~12 Ma after formation of the crust. The U-Pb systematics of co-genetic basaltic glass and variably low temperature altered basaltic whole rocks are thus a potential tool to place age constraints on the timing of alteration and fluid flow in the ocean crust.
Resumo:
Three samples of garnet-kyanite paragneiss from the Variscan Ulten Zone (Northern Italy) were studied in detail for U-Th-Pb monazite dating. Monazite in these gneisses is abundant, shows highly variable grain size and occupies different textural positions: within the matrix, as inclusion in garnet and kyanite, within apatite aggregates. Monazite shows different deformation features as a function of the textural position: enclosed (shielded) monazite is generally more fractured than matrix (unshielded) monazite. The integration of textural information with deformation features and in situ U-Th-Pb analyses by LA-ICP-MS indicates that there is no direct correlation between textural site and monazite ages. Old ages of 351-343 Ma, determined on portions of large matrix (unshielded) monazite and on rare domains of monazite shielded by garnet, have been related to a prograde stage of the Variscan metamorphic evolution of the Ulten Zone. Ages of 330-326 Ma, which are related to the thermal peak, are recorded by small matrix monazite, external domains of large matrix monazite, and by (domains of) fractured monazite enclosed in garnet and kyanite. Large, old unshielded grains formed as blasts during the prograde metamorphic history and survived the peak metamorphism during which crystallisation/re-crystallisation partially occurred.
Resumo:
Uranium and thorium contents, as well as their distribution patterns have been studied in biogenic phosphates from the Atlantic and Pacific Oceans. Differently lithified fish remains (bones, scales, teeth) and marine mammal bones (ribs, vertebras, earbones) collected from both reduced shelf sediments and oxidized pelagic ones have been analyzed. U content in the material varies from 0.7 to 700 ppm, and Th content - from <0.5 to 14 ppm. U/Th ratio varies from 0.16 to 400. Contents of both elements increase with lithification of biogenic phosphates. U concentration is more intense on shelves, whereas thorium concentration increases in pelagic areas. Partial positive correlation of U and Th with Fe and negative correlation of U with organic carbon are noted. The latter corresponds to higher lithification of biogenic phosphates. Calcium phosphate transformed from hydroxyapatite to fluorcarbonate-apatite is the main carrier of U, while transformed organic matter is a minor agent. Thorium is mainly bound with Fe.
Resumo:
The Lesser Antilles arc is a particularly interesting island arc because it is presently very active, it is located perpendicular to the South American continent and its chemical and isotopic compositions display a strong north-south gradient. While the presence in the south of a thick pile of sedimentary material coming from the old South American continent has long been suspected to explain the geochemical gradient, previous studies failed to demonstrate unambiguously a direct link between the arc lava compositions and the subducted sediment compositions. Here, we present new Nd, Sm, Th, U and Pb concentrations and Nd-Pb isotopic data for over 60 sediments from three sites located in the fore arc region of the Lesser Antilles arc. New data for DSDP Site 543 drill core located east of Dominica Island complement the data published by White et al. (1985, doi:10.1016/0016-7037(85)90082-1) and confirm their relatively uniform isotopic compositions (i.e., 206Pb/204Pb between 19.13 and 19.53). In contrast, data obtained on DSDP Site 144 located further south, on the edge of the South American Rise and on sediments from Barbados Island are much more variable (206Pb/204Pb ranges from 18.81 to 27.69). The very radiogenic Pb isotopic compositions are found in a 60 m thick black shale unit, which has no age equivalent in the Site 543 drill core. We interpret the peculiar composition of the southern sediments as being due to two factors, (a) the proximity of the South American craton, which contributes coarse grain old detrital material that does not travel far from the continental shelf, and (b) the presence of older sediments including the thick black shale unit formed during Oceanic Anoxic events 2 and 3. The north-south isotopic change known along the Lesser Antilles arc can be explained by the observed geographical changes in the composition of the subducted sediments. About 1% contamination of the mantle wedge by Site 543 sediments explains the composition of the northern islands while up to 10% sediments like those of Site 144 is required in the source of the southern island lavas. The presence of black shales in the subducted pile provides a satisfactory explanation for the very low Delta8/4 values that characterize the Lesser Antilles arc.