348 resultados para Total Maximum Daily Load Program (Ill.)
Resumo:
Bacterial and thermogenic hydrocarbons are present in the sorbed-gas fraction of Peru margin sediments. At Ocean Drilling Program (ODP) Sites 681, 682, 684, and 686, bacterial gases are restricted to the early diagenetic zones, where dissolved sulfate has been exhausted and methanogenesis occurs. Methane migrating into the sulfate zone at Sites 681, 684, 686, and possibly 682, has been consumed anaerobically by methanotrophs, maintaining the low concentrations and causing an isotope shift in d13C(CH4) to more positive values. Significant amounts of C2+ hydrocarbons occur at the shelf Sites 680/681, 684, and 686/687, where these hydrocarbons may be associated with hypersaline fluids. There is evidence at Site 679 that sorbed C2+ hydrocarbons may also have been transported by hypersaline fluids. This characteristic C2+ hydrocarbon signature in the sorbed-gas fractions of sediments at Site 679 is not reflected in data obtained using the conventional "free-," "canned-," or "headspace-gas" procedures. The molecular and isotope compositions of the sorbed-gas fraction indicate that this gas may have a thermogenic source and may have spilled over with the hypersaline fluids from the Salaverry Basin into the Lima Basin. These traces of thermogenic hydrocarbon gases are over-mature (about 1.5% Ro) and are discordant with the less-mature sediments in which they are found. This observation supports the migration of these hydrocarbons, possibly from continental sources. Sorbed-gas analyses may provide important geochemical information, in addition to that of the free-gases. Sorbed-gases are less sensitive to activities in the interstitial fluids, such as methanogenesis and methanotrophy, and may faithfully record the migration of hydrocarbons associated with hypersaline fluids.
Resumo:
This data was collected during a cruise across Drake Passage in the Southern Ocean in February 2009. This data consists of coccolithophore abundance, calcification and primary production rates, carbonate chemistry parameters and ancillary data of macronutrients, chlorophyll-a, average mixed layer irradiance, daily irradiance above the sea surface, euphotic and mixed layer depth, temperature and salinity.
Resumo:
Vorliegender Band enthält die für alle internationalen Polarstationen obligatorischen meteorologischen Beobachtungen der russischen Polarstation an der Lenamündung für den Zeitraum vom 1. September 1882 bis 31. August 1883 und vom 1. September 1883 bis zum 6. Juli 1884.
Resumo:
A high-resolution stratigraphy is essential toward deciphering climate variability in detail and understanding causality arguments of events in earth history. Because the highly dynamic middle to late Eocene provides a suitable testing ground for carbon cycle models for a waning warm world, an accurate time scale is needed to decode climate-driving mechanisms. Here we present new results from ODP Site 1260 (Leg 207) which covers a unique expanded middle Eocene section (magnetochrons C18r to C20r, late Lutetian to early Bartonian) of the tropical western Atlantic including the chron C19r transient hyperthermal event and the Middle Eocene Climate Optimum (MECO). To establish a detailed cyclostratigraphy we acquired a distinctive iron intensity records by XRF scanning Site 1260 cores. We revise the shipboard composite section, establish a cyclostratigraphy and use the exceptional eccentricity modulated precession cycles for orbital tuning. The new astrochronology revises the age of magnetic polarity chrons C19n to C20n, validates the position of very long eccentricity minima at 40.2 and 43.0 Ma in the orbital solutions, and extends the Astronomically Tuned Geological Time Scale back to 44 Ma. For the first time the new data provide clear evidence for an orbital pacing of the chron C19r event and a likely involvement of the very long eccentricity cycle contributing to the evolution of the MECO.
Resumo:
Based on the data of synchronous observations of hydrophysical and biogeochemical parameters in the near-mouth and shallow-water areas of the northern Caspian in 2000-2001, the scale of spatiotemporal variability in the following characteristics of the water-bottom system was estimated (1) flow velocity and direction within vortex structures formed by the combined effect of wind, discharge current, and the presence of higher aquatic plants; (2) dependence of the spatial distribution of the content and composition of suspended particulate matter on the hydrodynamic regime of waters and development of phytoplankton; (3) variations in the grain-size, petrographic, mineralogical, and chemical compositions of the upper layer of bottom sediments at several sites in the northern Caspian related to the particular local combination of dominant natural processes; and (4) limits of variability in the group composition of humus compounds in bottom sediments. The acquired data are helpful in estimating the geochemical consequences of a sea level rise and during the planning of preventive environmental protection measures in view of future oil and gas recovery in this region.
Resumo:
A composite North Atlantic record from DSDP Site 609 and IODP Site U1308 spans the past 300,000 years and shows that variability within the penultimate glaciation differed substantially from that of the surrounding two glaciations. Hematite stained grains exhibit similar repetitive down-core variations within the Marine Isotope Stage (MIS) 8 and 4-2 intervals, but little cyclic variability within the MIS 6 section. There is also no petrologic evidence, in terms of detrital carbonate-rich (Heinrich) layers, for surging of the Laurentide Ice Sheet through the Hudson Strait during MIS 6. Rather, very high background concentration of ice-rafted debris (IRD) indicates near continuous glacial meltwater input that likely increased thermohaline disruption sensitivity to relatively weak forcing events, such as expanded sea ice over deepwater formation sites. Altered (sub)tropical precipitation patterns and Antarctic warming during high orbital precession and low 65° N summer insolation appears related to high abundance of Icelandic glass shards and southward sea ice expansion. Differing European and North American ice sheet configurations, perhaps aided by larger variations in eccentricity leading to cooler summers, may have contributed to the relative stability of the Laurentide Ice Sheet in the Hudson Strait region during MIS 6.
Resumo:
The current study presents quantitative reconstructions of tree cover, annual precipitation and mean July temperature derived from the pollen record from Lake Billyakh (65°17'N, 126°47'E, 340 m above sea level) spanning the last ca. 50 kyr. The reconstruction of tree cover suggests presence of woody plants through the entire analyzed time interval, although trees played only a minor role in the vegetation around Lake Billyakh prior to 14 kyr BP (<5%). This result corroborates low percentages of tree pollen and low scores of the cold deciduous forest biome in the PG1755 record from Lake Billyakh. The reconstructed values of the mean temperature of the warmest month ~8-10 °C do not support larch forest or woodland around Lake Billyakh during the coldest phase of the last glacial between ~32 and ~15 kyr BP. However, modern cases from northern Siberia, ca. 750 km north of Lake Billyakh, demonstrate that individual larch plants can grow within shrub and grass tundra landscape in very low mean July temperatures of about 8 °C. This makes plausible our hypothesis that the western and southern foreland of the Verkhoyansk Mountains could provide enough moist and warm microhabitats and allow individual larch specimens to survive climatic extremes of the last glacial. Reconstructed mean values of precipitation are about 270 mm/yr during the last glacial interval. This value is almost 100 mm higher than modern averages reported for the extreme-continental north-eastern Siberia east of Lake Billyakh, where larch-dominated cold deciduous forest grows at present. This suggests that last glacial environments around Lake Billyakh were never too dry for larch to grow and that the summer warmth was the main factor, which limited tree growth during the last glacial interval. The n-alkane analysis of the Siberian plants presented in this study demonstrates rather complex alkane distribution patterns, which challenge the interpretation of the fossil records. In particular, extremely low n-alkane concentrations in the leaves of local coniferous trees and shrubs suggest that their contribution to the litter and therefore to the fossil lake sediments might be not high enough for tracing the Quaternary history of the needleleaved taxa using the n-alkane biomarker method.