83 resultados para Titicaca, Lago
Resumo:
Chironomid headcapsules were used to reconstruct late glacial and early-Holocene summer temperatures at Lago Piccolo di Avigliana (LPA). Two training sets (northern Sweden, North America) were used to infer temperatures. The reconstructed patterns of temperature change agreed well with the GRIP and NGRIP d18O records. Inferred temperatures were high during the Bølling (ca 19 °C), slowly decreased to ca 17.5 °C during the Allerød, reached lowest temperatures (ca 16 °C) during the Younger Dryas, and increased to ca. 18.5 °C during the Preboreal. The amplitudes of change at climate transitions (i.e. Oldest Dryas/Bølling: 3 °C, Allerød/Younger Dryas: 1.5 °C, and Younger Dryas/Preboreal: 2.5 °C) were smaller than in the northern Alps but similar to those recorded at another site in northeastern Italy. Our results suggest that (1) Allerød temperatures were higher in the southern Alps and (2) higher during the Preboreal (1 °C) than during the Allerød. These differences might provide an explanation for the different responses of terrestrial-vegetation to late glacial and early-Holocene climatic changes in the two regions. Other sites on both sides of the Alps should be studied to confirm these two hypotheses.
Resumo:
Ostracode species assemblages and stable oxygen and carbon isotope ratios of living and recent ostracodes, together with delta18O and delta13C_DIC values of host water samples, provide a first data set that characterizes a wide range of modern aquatic environments in the Laguna Cari-Laufquen (41°S, 68 - 69°W) and the Lago Cardiel area (48 - 49°S, 70 - 71°W) in Patagonia, Argentina. This data set will ultimately be used to interpret and calibrate data acquired from lake sediment cores with the goal of reconstructing past climate. Species assemblages and isotope values can be assigned to three groups; (1) springs, seeps and streams, (2) permanent ponds and lakes, and (3) ephemeral ponds and lakes. Springs, seeps and streams are characterized by Darwinula sp., Heterocypris incongruens, Eucypris fontana, Amphicypris nobilis and Ilyocypris ramirezi. Ostracode and water isotope values range between -13 and -5 per mil for oxygen, and between -15 and -3 per mil for carbon. They are the most negative of the entire sample set, reflecting ground water input with little or no evaporative enrichment. Limnocythere patagonica, Eucypris labyrinthica, Limnocythere sp. and Eucypris aff. fontana are typical species of permanent ponds and lakes. Isotope values indicate high degree of evaporation of lake waters relative to feeder springs and streams and range between -7 and +5 per mil for oxygen, and -5 and +4 per mil for carbon. Limnocythere rionegroensis is the dominant species in ephemeral ponds and lakes. These systems display the most enriched isotope values in both ostracodes and host waters, extending from -5 to +7 per mil for oxygen, and from -5 to +6 per mil for carbon. Living ostracodes show a positive offset from equilibrium values of up to 2 per mil for oxygen. Carbon-isotope values are up to 6? more negative than equilibrium values in highly productive pools. Comparison of ostracode and host water isotope signals permits assessment of the life span of the aquatic environments. Valves from dead ostracodes collected from ephemeral ponds and lakes show a wide scatter with each sample providing a snapshot of the seasonal history of the host water. The presence of the stream species Ilyocypris ramirezi and a wide range of ostracode isotope values suggest that ephemeral ponds and lakes are fed by streams during spring run-off and seasonally dry. A temporary character is also indicated by Heterocypris incongruens, a drought-resistant species that occupies most springs and seeps. In addition, Limnocythere rionegroensis has adjusted its reproduction strategies to its environment. Whereas only females were collected in fresh host waters, males were found in ephemeral ponds and lakes with higher solute content. Sexual reproduction seems to be the more successful reproduction strategy in high and variable salinities and seasonal droughts. The temporary character of the aquatic environments shows that the availability of meteoric water controls the life span of host waters and underlines the sensitivity of the area to changes in precipitation.
Resumo:
The island of Isla de los Estados is situated at 54.5°S, 64°W, east of Argentinian Tierra del Fuego, and is located in a sensitive geographic position in relation to the zonal circulation between Antarctica and South America. Its terrestrial records of the last deglaciation, recording atmospheric conditions but within an oceanic setting, can help to clarify changes of regional circulation patterns, both atmospheric and marine. Here, we present geochemical analyses from 16-10 ka cal BP of a peat core from Lago Galvarne Bog at the northern coast of the island, and a lake sediment core from Laguna Cascada 3 km further south. The data comprise TC, TN, loss on ignition analyses and continuous XRF scanning on both cores as well as age-depth modeling based on AMS-14C dating. Deglaciation and onset of peat formation in the coastal areas began before 16 ka cal BP followed by a rapid glacial retreat and the start of lacustrine sedimentation further inland. Data suggest initially windy conditions with permafrost succeeded by gradually warmer and wetter conditions until ca 14.5 ka cal BP. The warming trend slows down until ca 13.5 ka cal BP, followed by arid conditions culminating around 12.8 ka cal BP. Our data suggest fairly warm conditions and the establishment of denser peat and forest vegetation ca 10.6 ka cal BP, contemporaneous with the onset of the Antarctic thermal optimum. This indicates large-scale shifts in the placement of zonal flow and the Westerlies at the beginning of the Holocene.
Resumo:
The data base for this study is represented by essentially nonevaporitic Messinian sediments recovered at ODP Sites 654, 653, 652, and 656 along the eastern Sardinian margin, and of the overlying early Pliocene oozes. Grain-size distribution, carbonate content, and microscopic observation of the sand size fractions were investigated. Messinian paleoenvironments, documented in the western Tyrrhenian Sea (ODP Sites 654 and 653), provide additional evidence supporting the deep basin desiccation model. A sharp lithologic contrast between early Pliocene pelagic oozes and latest Messinian conformable gypsiferous silts supports this model. The "lago-mare" biofacies was only occasionally observed in the shallowest site and is limited to the topmost part of the Messinian. Sites 652 and 656, lying in the deeper part of the Tyrrhenian and located on the downthrown side of an important eastward dipping fault system known as "Faglia centrale" are characterized by terrigenous sedimentation, with partly recycled minor evaporites. Of special interest is Site 652, where the thickness of the (probable) Messinian is 530 m. Sedimentary characters indicate a permanently subaqueous but nonmarine environment, with turbidites accumulating in a rapidly subsiding basin. According to the model proposed, this basin was fed by continental waters during times of maximum evaporitic draw-down, with temporary marine incursions from the west or southwest when the water level was higher. A basement ridge separated the evaporating pond from this endoreic lake located on the opposite (eastern) margin of the Tyrrhenian Basin, which was then limited to its western part. Post-Messinian reactivation of the "Faglia centrale" is necessary to account for the inversion of the relief.