103 resultados para Three-component Magma Mixing
Resumo:
Igneous rocks were recovered from three sites on Hess Rise during Deep Sea Drilling Project Leg 62: altered basalt at Site 464, at the northern end of Hess Rise; and altered trachyte from Site 465, and rounded basalt pebbles in upper Albian to middle Miocene sediments from Site 466, both at the southern end of Hess Rise. Major-, minor-, and trace-element data for basalt from Hole 464 are consistent with these rocks being transitional tholeiites that have undergone low-temperature alteration by reaction with sea water. Trachyte from Hole 465A exhibits as many as three generations of plagioclase along with potash feldspar that are flow aligned in groundmasses alterted to smectites and random mixed-layer clays. Textural evidence indicates that these rocks were eruped subaerially. Chemical data show a range of values when plotted on two- and three-component variation diagrams. The observed variations may result in part from differentiation, but they also reflect the high degree of alteration. Several oxides and elements show strong correlation with H2O+: K2O, SiO2, Rb and Lu decrease and MgO increases with increasing H2O+. These trends, except for that of Lu, are consistent with experimentally determined changes in chemistry that accompany alteration. The trend for Lu has not been previously reported; it may result from a more-intense alteration of the HREE-rich mafic minerals than of the LREE-rich feldspars. Despite their alteration, the trachytes compare favorably with alkalic differentiates from oceanic islands. We interpret Hess Rise as a volcanic platform formed by eruption of off-ridge volcanic rocks onto MORB oceanic crust during the Aptian and Albian stages, after the basement had migrated away from the spreading center. By analogy with present oceanic islands, we propose that early tholeiitic basalts were followed by alkalic basalts and their differentiation products (trachytes), producing a volcanic archipelago of islands and seamounts. Subsequent tectonism and subsidence led to the present state of Hess Rise.
Resumo:
Basalts from the base of a small seamount on ~1.5-m.y.-old crust west of the East Pacific Rise (EPR) at 9°N are intermediate in chemical and isotopic composition between light-rare-earth-element-depleted tholeiite (normal midocean ridge basalt (MORB)) and alkali basalt. Like oceanic alkali basalt, these rocks contain significantly more Ba, K, P, Sr, Ti, U, and Zr than normal MORB. Since the absolute abundances of these elements are still well below alkali basalt levels, the label transitional is adopted for these basalts. A series of fractionated MORB also occurs in this area, northwest of the Siqueiros Fracture Zone - Transform Fault. The normal tholeiites are either olivine-plagioclase or plagioclase-clinopyroxene phyric, while the transitional basalts are spinel-olivine phyric. Fractional crystallization quantitatively accounts for the chemical variability of the tholeiitic series but not for the transitional basalts. The tholeiitic series probably evolved in a crustal magma chamber ~4 km below the crest of the East Pacific Rise. 143Nd/144Nd and other chemical data suggest that the large-ion-lithophile-enriched transitional basalts may represent a hybrid of normal MORB and Siqueiros area alkali basalt. Incompatible element plots of K, P, and U indicate possible derivation of the transitional basalts by magma mixing. Magma mixing of unfractionated normal MORB and Siqueiros alkali basalt has been quantified. Derivation of the transitional basalts from a 1:1 mixture is supported by all available chemical data, including Cr, Cu, Nd, Ni, Sm, Sr, U, and V. This magma mixing apparently occurred at ?<~30 km depth within a few tens of kilometers from the EPR axis. These Siqueiros area EPR transitional basalts are compared with Mid-Atlantic Ridge (MAR) transitional basalts from the Iceland and Azores areas. The Siqueiros area basalts reflect a profound chemical and isotopic heterogeneity in the upper mantle, similar to that found along the MAR. Unlike the MAR, the EPR shows no evidence of plumelike bulges and associated large-scale outpourings of nonnormal MORB resulting from these mantle heterogeneities. Siqueiros alkali basalt and MORB, as well as transitional basalt and MORB, were recovered from single dredge hauls. Such close spatial and temporal proximity of the inferred mantle sources places severe constraints on geometric and physicochemical upper mantle models.
Resumo:
A 20 kyr long sediment sequence from the Congo deep sea fan (core GeoB 6518-1), one of the world's largest deep sea river fans, has been analysed for bulk and molecular proxies in order to reconstruct the marine, soil and plant organic carbon (OC) contributions to these sediments since the last glacial maximum. The bulk proxies applied, C/N ratio and d13Corg, ranged from 10 to 12.5 and from -24.5 to -21 per mill VPDB, respectively. As molecular proxies, concentrations of marine derived alkenones and terrestrial derived odd-numbered n-alkanes were used, which varied between 0.2 and 4 µg/g dry weight sediment. In addition, the branched vs. isoprenoid tetraether (BIT) index, a proxy for soil organic matter input, was used, which varied from 0.3 to 0.5 in this core. Application of binary mixing models, based on the different individual proxies, showed estimates for terrestrial OC input varying by up to 50% due to the heterogeneous nature of the OC. Application of a three end-member mixing model using the d13Corg content, the C/N ratio and the BIT index, enabled the distinction of soil and plant organic matter as separate contributors to the sedimentary OC pool. The results show that marine OC accounts for 20% to 40% of the total OC present in the deep sea fan sediments over the last 20 kyr and that soil OC accounts for about half (45% on average) of the OC present. This suggests that soil OC represents the majority of the terrestrial OC delivered to the fan sediments. Accumulation rates of the plant and soil OC fractions over the last 20 kyr varied by a factor of up to 5, and are strongly related to sediment accumulation rates. They showed an increase starting at ca. 17 kyr BP, a decline during the Younger Dryas, peak values during the early Holocene and lower values in the late Holocene. This pattern matches with reconstructions of past central African humidity and Congo River discharge from the same core and revealed that central African precipitation patterns exert a dominant control on terrestrial OC deposition in the Congo deep sea fan. Marine OC accumulation rates are only weakly related to sediment accumulation rates and vary only little over time compared to the terrigenous fractions. These variations are likely a result of enhanced preservation during times of higher sedimentation rates and of relative small fluctuations in primary production due to wind-driven upwelling.
Resumo:
Between 1086.6 and 1229.4 m below seafloor at Site 642 on the Outer Vøring Plateau, a series of intermediate volcanic extrusive flow units and volcaniclastic sediments was sampled. A mixed sequence of dacitic subaerial flows, andesitic basalts, intermediate volcaniclastics, subordinate mid-ocean ridge basalt, (MORB) lithologies, and intrusives was recovered, in sharp contrast to the more uniform tholeiitic T-type MORB units of the overlying upper series. This lower series of volcanics is composed of three chemically distinct groups, (B, A2, A1), rather than the two previously identified. Flows of the dacitic group (B) have trace-element and initial Sr isotope signatures which indicate that their source magma derived from the partial melting of a component of continental material in a magma chamber at a relatively high level in the crust. The relative proportions of crustal components in this complex melt are not known precisely. The most basic group (A2) probably represents a mixture of this material with MORB-type tholeiitic melt. A third group (A1), of which there was only one representative flow recovered, is chemically intermediate between the two groups above, and may suggest a repetition of, or a transition phase in, the mixing processes.
Resumo:
This paper constitutes a first detailed and systematic facies and biota description of an isolated carbonate knoll (Pee Shoal) in the Timor Sea (Sahul Shelf, NW Australia). The steep and flat-topped knoll is characterized by a distinct facies zonation comprising (A) soft sediments with scattered debris and scarce sponges, hydrozoans and crinoids (320-210 m water depth), (B) hardground outcrops (step-like banks, vertical cliffs) that are mainly colonized by octocorals and sponges (210-75 m), and (C) the summit region (75-21 m) where the slopes merge gently into the flat-topped summit that is densely colonized by massive and encrusting zooxanthellate corals and the octocoral Heliopora coerulea. In contrast, the sediments recovered from the summit are dominated by the green alga Halimeda, subordinate components are corals, benthic foraminifers, mollusks, and coralline red algae. Thus, the sediments are classified as chlorozoan grain assemblage. However, non-skeletal grains (fecal pellets, ooids) are almost completely absent. This discrepancy between the living biota and the sediment composition could reflect a disruption by the severe tropical cyclone Ingrid that hit the northern Australian shelf in March 2005, just before the sampling for this study took place (September 2005).
Resumo:
The ~46-m.y.-old igneous basement cored during Leg 200 in the North Pacific represents one of the few cross sections of Pacific oceanic crust with a total penetration into basalt of >100 m. The rocks, emplaced during the Eocene at a fast-spreading rate (~14 cm/yr; full rate) are strongly differentiated tholeiitic basalts (ferrobasalts) with 7-4.5 wt% MgO, relatively high TiO2 (2-3.5 wt%), and total iron as Fe2O3 (9.1-16.8 wt%). The differentiated character of these lavas is related to unusually large amounts of crystallization differentiation of plagioclase, clinopyroxene, and olivine. The lithostratigraphy of the basement (cored to ~170 meters below seafloor) is divided into three units. The deepest unit (lithologic Unit 3), is a succession of lava flows of no more that a few meters thickness each. The intermediate unit (lithologic Unit 2) is represented by intermixed thin flows and pillows, whereas the shallowest unit (lithologic Unit 1), comprises two massive flows. The rocks range from aphyric to sparsely clinopyroxene-plagioclase-phyric (phenocryst content = <3 vol%) and from holocrystalline to hypohyaline. Chilled margins of pillow fragments show holohyaline to sparsely vitrophyric textures. Site 1224 oxide minerals present a type of alteration not previously seen, where titanomagnetite is only partially destroyed and the pure magnetite component is partially removed from the mineral, leaving, in the most extreme case, a nearly pure ulvöspinel residuum. As a result of this dissolution, iron, mainly in the oxidized state, is added to the circulating solvent fluids. This means that a considerable metal source can result from low-temperature reactions throughout the upper ocean crust. The coarsest-grained lithologic Unit 1 rocks have interstitial myrmekitic intergrowths of quartz and sodic plagioclase (~An12), roughly similar in mineralogy and bulk composition to tonalite/trondhjemite veinlets in abyssal gabbros from the southwest Indian Ocean and Hess Deep, eastern equatorial Pacific. Based on idiomorphic relationships and projections into the simplified Q-Ab-Or-H2O granite ternary system, the myrmekitic intergrowths formed at the same time as, or just after, the oxide minerals coprecipitated and at low water vapor pressure (~0.5 kbar). Their compositions correspond to SiO2-oligoclase intergrowths that are considerably less potassic than dacitic glasses that erupt, although rarely, along the East Pacific Rise or that have been produced experimentally by partial melting of gabbro. Based on the crystallization history and comparison to experimental data, the original interstitial siliceous liquids resulted from late-stage immiscible separation of siliceous and iron-rich liquids. The rare andesitic lavas found along the East Pacific Rise may be hybrid rocks formed by mixing of these immiscible siliceous melts with basaltic magma.
Resumo:
Ocean Drilling Program Leg 135 provided igneous rock cores from six sites drilled on a transect across the Lau Basin between the Lau Ridge remnant arc and the modem spreading ridges of the Central and Eastern Lau Spreading Centers. The drill cores sampled crust from the earliest stage of backarc extension (latest Miocene time, about 6 Ma), and younger crust (late Pliocene, about 3.8-2 Ma, and middle Pleistocene, about 0.64-0.8 Ma). Nearly all of the igneous samples are from tholeiitic basalt flows; many of them are interbedded with arc-composition volcaniclastic sediments. Rock compositions range from olivine-plagioclase-clinopyroxene basalt, with up to 8% MgO, to oceanic andesites with less than 3.2% MgO and silica contents as high as 56%. The oldest rocks recovered are close in composition to rocks formed at the modern Central and Eastern Lau Spreading Centers and have MORB-like characteristics. Generation of the oldest units was coeval with arc-tholeiitic volcanism on the Lau Ridge less than 100 km to the west. The arc and backarc melts came from different mantle sources. At three sites near the center of the basin, the crust is arc-tholeiitic basalt, two-pyroxene basaltic-andesite, and two-pyroxene andesite. These rocks have many similarities to modem Tofua Arc lavas yet they were drilled within 70 km of the MORB-like Eastern Lau Spreading Center. Estimates of the minimum age for these arc-like rocks indicate that they are late Pliocene (about 2 Ma). These ages overlap the age of the nearby Eastern Lau Spreading Center. The heterogeneous crust of the Lau Basin carries many of the signatures of supra-subduction zone (SSZ) melts but also has a distinct MORB-like component. Mixing between SSZ and MORB mantle sources may explain the variations and the spatial distribution of magma types.