64 resultados para Teorema Egregium de Gauss
Resumo:
We have carried out a multiphase analysis of samples from ODP Site 177-1092, Meteor Rise, subantarctic South Atlantic. Samples were analyzed for ice-rafted debris (IRD [see Table T1]) and stable isotopes from benthic foraminifera [see Murphy et al., 2002, doi:10.1016/S0031-0182(01)00495-3]. Both analyses were performed on the same samples. Additional work was performed to identify the paleomagnetic stratigraphy. The analyzed samples range in age from about 2.6(?) Ma to 4.6 Ma, a time span that saw considerable global warmth, but witnessed overall global refrigeration and the transition to truly bipolar glaciations. IRD arrived frequently during the Early and early Late Pliocene, but only as 'background rafting' (occasional grains per sample). The first identifiable IRD above background rafting is associated with marine isotope stage (MIS) KM4 (~3.18 Ma). Successive IRD peaks become larger, the same pattern as noted at nearby Site 114-704. A very large peak near the top of the record, approximately 2.8 Ma, is considered to represent a hiatus. Peaks below 51.3 meters composite depth (mcd) coincide with positive excursions of the oxygen isotopic record, and with negative excursions of the carbon isotopic curve, a pattern also noted at Site 114-704. However, the reasonably large IRD peak at 51 mcd (tentatively identified with MIS G11) coincides with a positive excursion on the carbon isotopic curve and negative excursion on the oxygen isotopic curve. This relationship suggests a northern hemisphere interglacial, rising sea level, destabilization of the Antarctic margin, and delivery of Antarctic icebergs to the Southern Ocean. Such a mechanism has recently been suggested by Kanfoush et al. (2000, doi:10.1126/science.288.5472.1815) for latest Pleistocene stadial/interstadial oscillations. Here we suggest that such a mechanism may have been in place on glacial/interglacial time scales as early as the Late Pliocene.
Resumo:
The primary objective of DSDP Leg 94 was to obtain continuous paleoclimatic records along a roughly north-south transect in the North Atlantic. The magnetostratigraphy of 21 holes at 6 sites cored with the hydraulic piston corer and extended-core-barrel corer is presented here and establishes an independent chronology for these sediments. Nearly complete records were obtained for the last 2.5 m.y.; in addition, deeper drilling at three sites to satisfy tectonic and paleoceanographic objectives produced older sections suitable for magnetostratigraphic study, allowing first-order correlations of the polarity sequences with calcareous and siliceous micro fossil events. The sections with high sediment accumulation rates yielded very detailed records of polarity history and allowed three short normal-polarity zones within the Matuyama Chronozone to be detected, in addition to the Jaramillo and Olduvai subchronozones. A short reversed-polarity zone also occurs, within the upper intervals of the Gauss Chronozone. These short zones are present in multiple holes, ruling out the possibility that they might be of local origin. Correlation of these short zones with radiometrically dated polarity zones in igneous rocks strongly supports the interpretation of these polarity zones as records of true geomagnetic polarity chrons.
Resumo:
We examined diatom preservation patterns in Pliocene age sediments of Jane Basin (ODP Site 697) and compared them with diatom distribution in more northerly sites at various sectors of the Southern Ocean. Our data from Site 697, as well as other sites from around the Southern Ocean, support the view that there was significant ice growth on Antarctica during the late Pliocene. DSDP Site 514 in the Atlantic sector shows increased relative abundance of Eucampia antarctica, an ice-related form, in the upper part of the Gauss Chron with a larger increase just above it. With one exception, all sites included in the present study show increased relative abundance of E. antarctica in the upper part of the Gauss. Our view that there was ice growth on Antarctica during the late Gauss Chron is supported by the results from ODP Site 697. While diatoms are present and percent opal is high in the early and middle Gauss Chron (suggesting more open-ocean conditions), late Gauss sediments contain low percentages of opal and few or no diatoms. This is also true for the early Matuyama Chron. If we accept spring and summer sea-ice cover as the major suppressant of diatom productivity in the Southern Ocean, then we conclude that sea-ice covered the region around Site 697 through much of the year during this interval. Further, the absence of diatoms and the low percentages of opal in middle and late Matuyama chron sediments suggests increased sea-ice cover over the Jane Basin during this time. Although warmer openocean intervals are inferred for intervals near the Olduvai and Jaramillo Subchrons, most of the Matuyama Chron was marked by extensive sea-ice cover with low seasonal contrast. Our results for the early part of the Brunhes Chron are similar, at least for the Jane Basin. During this time, sea-ice cover over the basin apparently extended well into the growing season. In contrast, the later Brunhes Chron is marked by alternating open water (during the growing season) and extensive, almost year-round, sea-ice.
Resumo:
During Ocean Drilling Program (ODP) Leg 105, three sites (Sites 645 through 647) were drilled in Baffin Bay and the Labrador Sea to examine the tectonic evolution and the climatic and oceanic histories of this region. Biostratigraphic and magnetostratigraphic results vary at each site, while stratigraphic resolution depends on the limited abundance of marker species and the completeness of the paleomagnetic record. Because of the paucity of planktonic microfossils and the poor paleomagnetic record signatures, stratigraphic determinations at Site 645 often rely on defining minimum temporal constraints on specific samples or stratigraphic intervals. The completed stratigraphy indicates that the sedimentary sequence recovered at Site 645 is early Miocene to Holocene in age. The magnetostratigraphy and biostratigraphies are better defined at Sites 646 and 647 in the Labrador Sea. Site 646 generally contains a well-developed magnetostratigraphy and calcareous microfossil biostratigraphy. This biostratigraphy is based on calcareous nannofossils and planktonic foraminifers typical of the North Atlantic Ocean. Siliceous microfossils are also present at Site 646, but they are restricted to upper Pliocene through Holocene sediments. The stratigraphic sequence recovered at Site 646 is late Miocene to Holocene in age. Based primarily on the calcareous nannofossil stratigraphy, the sequence recovered at Site 647 consists of lower Eocene to lower Oligocene, lower Miocene, upper Miocene, and upper Pliocene through Holocene sediments. Three hiatuses are present in this sequence: the older hiatus separates lower Oligocene sediments from lower Miocene sediments, another hiatus separates lower Miocene sediments from upper Miocene sediments, and the youngest one separates upper Miocene from upper Pliocene sediments. A magnetostratigraphy is defined for the interval from the Gauss/Matuyama boundary through the Brunhes (Clement et al., this volume). Both planktonic foraminifers and siliceous microfossils have restricted occurrences. Planktonic foraminifers occur in Pliocene and younger sediments, and siliceous microfossils are present in lower Miocene and lower Oligocene sediments. The near-continuous Eocene through lower Oligocene sequence recovered at Site 647 allows the calcareous nannofossils and diatom stratigraphies at this site to act as a Paleogene stratigraphic framework. This framework can be compared with the stratigraphy previously completed for DSDP Site 112.
Resumo:
Paleomagnetic and rock magnetic measurements of basalt specimens from DSDP Hole 504B, associated with the Costa Rica Rift, have a mean natural remanence intensity (Jn) between 5 and 10 x 10**-3 gauss, consistent with the presence of a magnetized layer that is 0.5 to 1 km thick, which produces the observed magnetic anomalies. A mean Koenigsberger ratio (Qn) greater than 10 indicates that the remanence dominates the magnetic signal of the drilled section. The susceptibility (x) increases with depth, and the median demagnetizing field (MDF) decreases with increasing depth in Hole 504B, congruent with the downhole increase in the relative abundance of massive flow units. Hole 504B is composed of at least 12 units with distinct stable average inclinations (Is), which probably represent extrusion at times of different geomagnetic field directions and possibly also the effects of faulting. The thickness of basalt associated with these inclination units varies from less than 9 meters to possibly as much as 160 meters. Two relatively thick magnetic units (40 m and 45 m, separated by 100 m) have anomalously high Is values of -53° and -63°, in contrast with the near zero inclinations expected for the equatorial latitude of Site 504. For this reason and because the average inclination of all the magnetic units is skewed to a negative value, it might be that the entire section at Hole 504B was tilted by approximately 30°.
Resumo:
Short-term spectral analysis was carried out on geochemical logging data from ODP Site 704. The FFT was used to compute the amplitude spectra of short-term overlapping segments to produce depth-period-amplitude spectrograms of the logging data. The spectrograms provided a means of evaluating the significance of the observed periodic components. The periodic components that were consistently present and prominent across a given record interval were considered to be significant. Changes in the spectrogram characteristics seem to reflect changes in either lithology, sedimentation rates, or hiatuses and may therefore provide useful information to aid in stratigraphic and paleoenvironmental studies. The dominant periodicity during the late Pleistocene and Brunhes Chron (0.97 to 0.47 Ma) was determined to be > 100,000 yr whereas the upper Matuyama Chron was dominated by the 41,000-yr periodicity. These periodicities suggest that the sedimentation patterns within the upper Matuyama Chron (0.98-1.78 Ma) were influenced by the Milankovitch obliquity cycle and those within the latest Matuyama-Brunhes Chron (<0.98 Ma) by the eccentricity cycle. The Brunhes/Matuyama boundary therefore represents a major discontinuity. Periodicities observed within the lower Matuyama and the upper Gauss Chron did not correlate with any of the periodicities within the Milankovitch frequency bands.
Resumo:
Sediment patterns such as texture, composition, and facies from three selected areas of the Antarctic continental margin of the Weddell Sea are discussed in relation to environmental variations of the Quaternary hydrosphere and kryosphere. Advance and retreat of ice shelves as well as oscillations in sea ice coverage are reflected by particular sediment facies. The distribution of ice-rafted detritus tracks the Antarctic Coastal Current, and the Weddell Sea Bottom water contour current can be recognized by its distinctive winnowing and erosion pattern. Distribution and abundance of biogenic sediment components are mainly controlled by duration of sea ice coverage reflecting the long-term climatic evolution.
Resumo:
High-resolution benthic oxygen isotope and dust flux records from Ocean Drilling Program site 659 have been analyzed to extend the astronomically calibrated isotope timescale for the Atlantic from 2.85 Ma back to 5 Ma. Spectral analysis of the delta18O record indicates that the 41-kyr period of Earth's orbital obliquity dominates the Pliocene record. This is shown to be true regardless of fundamental changes in the Earth's climate during the Pliocene. However, the cycles of Sahelian aridity fluctuations indicate a shift in spectral character near 3 Ma. From the early Pliocene to 3 Ma, the periodicities were dominantly precessional (19 and 23 kyr) and remained strong until 1.5 Ma. Subsequent to 3 Ma, the variance at the obliquity period (41 kyr) increased. The timescale tuned to precession suggests that the Pliocene was longer than previously estimated by more than 0.5 m.y. The tuned ages for the magnetic boundaries Gauss/Gilbert and Top Cochiti are about 6-8% older than the ages of the conventional timescale. A major phase of Pliocene northern hemisphere ice growth occurred between 3.15 Ma and 2.5 Ma. This was marked by a gradual increase in glacial Atlantic delta18O values of 1per mil and an increase in amplitude variations by up to 1.5 per mil, much larger than in the Pacific deepwater record (site 846). The first maxima occured in cold stages G6-96 between 2.7 Ma and 2.45 Ma. Prior to 3 Ma, the isotope record is characterized by predominantly low amplitude fluctuations (< 0.7 per mil). When obliquity forcing was at its minimum between 4.15 and 3.6 Ma and during the Kaena interval, delta18O amplitude fluctuations were minimal. From 4.9 to 4.3 Ma, the delta18O values decreased by about 0.5 per mil, reaching a long-term minimum at 4.15 Ma, suggesting higher deepwater temperatures or a deglaciation. Deepwater cooling and/or an increase in ice volume is indicated by a series of short-term delta18O fluctuations between 3.8 and 3.6 Ma.
Resumo:
Isolated kerogens from four sites in the Middle Valley hydrothermal region of the Juan de Fuca Ridge (Ocean Drilling Project (ODP) Leg 139) were analysed by electron paramagnetic resonance (EPR) spectroscopy. Measurements of peak width, spin density and power saturation for site 857 kerogens, which increased regularly in maturity downhole, show correlation with vitrinite reflectance values from 0.61 to 2.5%, indicating the start of the oil window at depths from 200 to 400 m. Spin density increases to 1.56 * 10**17 spins per gram and peak width decreases to 3.45 G (gauss) with increasing depth. The tendency to power saturate also decreases with increasing maturity and increasing vitrinite reflectance within the oil window. These trends are consistent with a model in which exchange processes are occurring and cause changes in the EPR behavior of samples from this site. Sediments from other Middle Valley sites, 855, 856 and 858 contain large quantities of pyrite with Mn2+ impurities which interact with the carbon radical to distort the EPR measurements.