104 resultados para Sugar And Acid-rich Foods
Resumo:
Particle mixing rates have been determined for 5 South Atlantic/Antarctic and 3 equatorial Pacific deep-sea cores using excess 210Pb and 32Si measurements. Radionuclide profiles from these siliceous, calcareous, and clay-rich sediments have been evaluated using a steady state vertical advection diffusion model. In Antarctic siliceous sediments210Pb mixing coefficients (0.04-0.16 cm**2/y) are in reasonable agreement with the 32Si mixing coefficient (0.2 or 0.4 cm**2/y, depending on 32Si half-life). In an equatorial Pacific sediment core, however, the 210Pb mixing coefficient (0.22 cm**2/y) is 3-7 times greater than the 32Si mixing coefficient (0.03 or 0.07 cm**2/y). The difference in 210Pb and 32Si mixing rates in the Pacific sediments results from: (1) non-steady state mixing and differences in characteristic time and depth scales of the two radionuclides, (2) preferential mixing of fine-grained clay particles containing most of the 210Pb activity relative to coarser particles (large radiolaria) containing the 32Si activity, or (3) the supply of 222Rn from the bottom of manganese nodules which increases the measured excess 210Pb activity (relative to 226Ra) at depth and artificially increases the 210Pb mixing coefficient. Based on 32Si data and pore water silica profiles, dissolution of biogenic silica in the sediment column appears to have a minor effect on the 32Si profile in the mixed layer. Deep-sea particle mixing rates reported in this study and the literature do not correlate with sediment type, sediment accumulation rate, or surface productivity. Based on differences in mixing rate among three Antarctic cores collected within 50 km of each other, local variability in the intensity of deep-sea mixing appears to be as important as regional differences in sediment properties.
Resumo:
The Izu-Bonin forearc basement volcanic rocks recovered from Holes 792E and 793B show the same phenocrystic assemblage (i.e., plagioclase, two pyroxenes, and Fe-Ti oxides ±olivine), but they differ in the crystallization sequence and their phenocryst chemistry. All the igneous rocks have suffered low-grade hydrothermal alteration caused by interaction with seawater. As a result, only clinopyroxenes, plagioclases, and oxides have preserved their primary igneous compositions. The Neogene olivine-clinopyroxene diabasic intrusion (Unit II) recovered from Hole 793B differs from the basement basaltic andesites because it lacks Cr-spinels and contains abundant titanomagnetites (Usp38.5-46.4) and uncommon FeO-rich (FeO = 29%) spinels. It displays petrological and geochemical similarities to the Izu Arc volcanoes and, thus, can be considered as related to Izu-Bonin Arc magmatic activity. The titanomagnetites (Usp28.5-33) in the calc-alkaline andesitic fragments of the Oligocene volcaniclastic breccia in Hole 793B (Unit VI) represent an early crystallization phase. The Plagioclase phenocrysts enclosed in these rocks show oscillatory zoning and are less Ca-rich (An78.6-67.8) than the plagioclase phenocrysts of the diabase sill and the basement basaltic andesites. Their clinopyroxenes are Fe-rich augites (Fs ? 19.4; FeO = 12%) and thus, differ significantly from the clinopyroxenes of the Hole 793B arc-tholeiitic igneous rocks. The 30-32 Ma porphyritic, two-pyroxene andesites recovered from Hole 792E are very similar to the andesitic clasts of the Neogene breccia recovered in Hole 793B (Unit VI). Both rocks have the same crystallization sequence, and similar chemistry of the Fe-Ti oxides, clinopyroxenes, and plagioclases: that is, Ti-rich (Usp25.5-30.4) magnetites, Fe-rich augites, and intensely oscillatory zoned plagioclases with bytownitic cores (An86-63) and labradorite rims (An73-68). They display a calc-alkaline differentiation trend (Taylor et al., this volume). So, the basement highly porphyritic andesites recovered at Hole 792E, and the Hole 793B andesitic clasts of Unit VI show the same petrological and geochemical characteristics, which are that of calc-alkaline suites. These Oligocene volcanic rocks represent likely the remnants of the Izu-Bonin normal arc magmatic activity, before the forearc rifting and extension. The crystallization sequence in the basaltic andesites recovered from Hole 793B is olivine-orthopyroxene-clinopyroxene-plagioclase-Fe-Ti oxides, indicating a tholeiitic differentiation trend for these volcanic rocks. Type i is an olivine-and Cr-spinel bearing basaltic andesite whereas Type ii is a porphyritic pyroxene-rich basaltic andesite. The porphyritic plagioclase-rich basaltic andesite (Type iii) is similar, in most respects, to Type ii lavas but contains plagioclase phenocrysts. The last, and least common lava is an aphyric to sparsely phyric andesite (Type iv). Cr-spinels, included either in the olivine pseudomorphs of Type i lavas or in the groundmass of Type ii lavas, are Cr-rich and Mg-rich. In contrast, Cr-spinels included in clinopyroxenes and orthopyroxenes (Types i and ii lavas) show lower Cr* and Mg* ratios and higher aluminium contents. Orthopyroxenes from all rock types are Mg-rich enstatites. Clinopyroxenes display endiopsidic to augitic compositions and are TiO2 and Al2O3 depleted. All the crystals exhibit strong zoning patterns, usually normal, although, reverse zoning patterns are not uncommon. The plagioclases show compositions within the range of An90-64. The Fe-Ti oxides of the groundmass are TiO2-poor (Usp16-17). The Hole 793B basaltic andesites show, like the Site 458 bronzites from the Mariana forearc, intermediate features between arc tholeiites and boninites: (1) Cr-spinel in olivine, (2) presence of Mg-rich bronzite, Ca-Mg-rich clinopyroxenes, and Ca-plagioclase phenocrysts, and (3) transitional trace element depletion and epsioln-Nd ratios between arc tholeiites and boninites. Thus, the forearc magmatism of the Izu-Bonin and Mariana arcs, linked to rifting and extension, is represented by a depleted tholeiitic suite that displays boninitic affinities.
Resumo:
At Sites 1130 and 1132 of Ocean Drilling Program Leg 182 in the Great Australian Bight, we recovered an expanded Pleistocene section dominated by packstone and wackestone, deposited at unusually high rates of >20 cm/k.y. Shipboard observations detected an intermittent meter-scale alternation of light gray intervals with olive-gray intervals. Meter-scale samples were collected from the upper 250 m at both sites and decimeter-scale samples from four selected 2.5- to 4.0-m intervals in order to determine the texture and composition of sediments deposited along the upper slope throughout the Quaternary. Detailed textural and compositional data are presented from a total of 540 samples collected from both sites. Results indicate a general coarsening upward at both sites, with an accompanying upcore increase in high-Mg calcite (HMC) and aragonite and a decrease in low-Mg calcite (LMC). Samples collected at decimeter-scale intervals substantiate that the alternating light gray and olive-gray units detected on board ship are lithologically distinct. Light gray units consist of an LMC-rich silt, whereas olive-gray units consist of an aragonite and HMC-rich sand and silt. Sediment sources as well as timing and controls of this cyclic depositional pattern will be the subject of further investigations.
Resumo:
A composite section, which reconstructs a continuous stratigraphic record from cores of multiple nearby holes, and its associated composite depth scale are important tools for analyzing sediment recovered from a drilling site. However, the standard technique for creating composite depth scales on drilling cruises does not correct for depth distortion within each core. Additionally, the splicing technique used to create composite sections often results in a 10-15% offset between composite depths and measured drill depths. We present a new automated compositing technique that better aligns stratigraphy across holes, corrects depth offsets, and could be performed aboard ship. By analyzing 618 cores from seven Ocean Drilling Program (ODP) sites, we estimate that ?80% of the depth offset in traditional composite depth scales results from core extension during drilling and extraction. Average rates of extension are 12.4 ± 1.5% for calcareous and siliceous cores from ODP Leg 138 and 8.1 ± 1.1% for calcareous and clay-rich cores from ODP Leg 154. Also, average extension decreases as a function of depth in the sediment column, suggesting that elastic rebound is not the dominant extension mechanism.
Resumo:
Within a dipping sequence of middle Cretaceous to Eocene sediments on Broken Ridge, opal-A, opal-CT, and quartz occur as minor constituents in carbonate and ash-rich sediments. Biogenic opal-A is mainly derived from diatoms and radiolarians. Opal-A and almost all siliceous microfossils disappear within a narrow (<20-m-thick) transition zone below which authigenic opal-CT and quartz are present. These latter silica polymorphs occur together within a 750-m-thick interval, but the ratio of quartz/opal-CT increases with increasing age and depth within the pre-rift sediment sequence. The boundary between opal-A- and opal-CT-bearing sediments is also a physical boundary at which density, P-wave velocity, and acoustic impedance change. This physical transition is probably caused by infilling of pore space by opal-CT lepispheres.
Resumo:
Epiclastic volcanogenic rocks recovered from the Kerguelen Plateau during Ocean Drilling Program Legs 119 and 120 comprise (pre-)Cenomanian(?) claystones (52 m thick, Site 750); a Turonian(?) basaltic pebble conglomerate (1.2 m thick, Site 748; Danian mass flows (45 m thick, Site 747); and volcanogenic debris flows of Quaternary age at Site 736 (clastic apron of Kerguelen Island). Pyroclastic rocks comprise numerous Oligocene to Quaternary marine ash layers. The epiclastic sediments with transitional mid-ocean-ridge basalt (T-MORB) origin indicate weathering (Site 750) and erosion (Site 747) of Early Cretaceous T-MORB from a then-emergent Kerguelen Plateau, connected to Late Cretaceous tectonic events. The basal pebble conglomerate of Site 748 has an oceanic-island basalt (OIB) composition and denotes erosion and reworking of seamount to oceanic-island-type volcanic sources. The vitric- to crystal-rich marine ash layers are a few centimeters thick, have rather uniform grain sizes around 60 ± 40 µm, and are a result of Plinian eruptions. Crystal-poor silicic vitric ashes may also represent co-ignimbrite ashes. The ash layers have bimodal, basaltic, and silicic compositions with a few intermediate shards. The basaltic ashes are evolved high-titanium T-MORB; a few grains in a silicic pumice lapilli layer have a low-titanium basaltic composition. The silicic ashes comprise trachytic and rhyolitic glass shards belonging to a high-K series, except for a few low-K glasses admixed to a basaltic ash layer. Feldspar and clinopyroxene compositions fit the glass chemistry: high-Ti tholeiite-basaltic glasses have Plagioclase of An40-80 and pigeonite to augite clinopyroxene compositions. Silicic ashes have K-rich anorthoclase and minor Plagioclase around An20 and ferriaugitic to hedenbergitic clinopyroxene compositions. The line of magmatic evolution for the glass shards is not compatible with simple two-end member (high-Ti T-MORB and high-K rhyolite) mixing, but favors successive Ca-Mg-Fe pyroxene, Ti magnetite, and apatite fractionation, and K-rich alkali feldspar fractionation in trachytic magmas to yield rhyolitic compositions. Plagioclase fractionation occurs throughout. This qualitative model is in basic accordance with the observed mineral assemblage. However, as the time span for explosive volcanism spans >30 m.y., this basic model cannot comply with fractional crystallization in a single magma reservoir. The ash layers resulted from highly explosive eruptions on Kerguelen and, with less probability, Heard islands since the Oligocene. The explosive history starts with widespread Oligocene basaltic ash layers that indicate sea-level or subaerial volcanism on the Northern Kerguelen Plateau. After a hiatus of 24 m.y.(?), explosive magmatic activity was vigorously renewed in the late Miocene with more silicic eruptions. A peak in explosive activity is inferred for the Pliocene-Pleistocene. The composition and evolution of Kerguelen Plateau ash layers resemble those from other hotspot-induced, oceanic-island realms such as Iceland and Jan Mayen in the North Atlantic, and the Canary Islands archipelago in the Central Atlantic.
Resumo:
Newly sampled basaltic andesites and andesites from the tholeiitic Ferrar Supergroup of northern Victoria Land and George V Land, Antarctica, are attributed to the known low-Ti and high-Ti series. Aside from known sparsely distributed high-Ti extrusives, a high-Ti sill was found in the Alamein Range outside the Rennick Graben. Low-Ti lavas, sills and dikes display wide petrographical, mineral and geochemical variations, reflecting extensive in-situ differentiation. High-Ti rocks from Litell Rocks are homogeneous with respect to mineralogy and geochemistry, minor deviations are shown by the sampled sill. Chilled margins of low-Ti sills, dikes and lava flows exhibit nearly constant bulk-rock chemistry (mg# ~60) within the studied area. Compared to chilled margins from Tasmanian sills, the striking uniformity of the pre-emplacement chemistry of Ferrar magmas over large distances supports the magma transport model of Elliot et al. (1999, doi:10.1016/S0012-821X(99)00023-0). In the area investigated, compositional variations within the low-Ti series, caused by in-situ differentiation, increase towards the Wilson-Bowers Terrane boundary, possibly displaying the asymmetrical distribution of outcrops over this area. Absence of Ferrar occurrences east of the Bowers Terrane remains a matter of palaeo-geodynamic discussion. Besides, the secondary mineralogy of extrusives from Litell Rocks and Monument Nunataks exhibits noticeable differences, which indicates an elevated thermal gradient in the vicinity of Litell Rocks compared to Monument Nunataks during the Cretaceous.
Resumo:
Results of comprehensive geological, geophysical and geochemical studies carried out in the Cape Verde Fracture Zone (Central Atlantic) during Cruise 9 of R/V ''Antares'' (1990-1991) are published in the book. Detailed characterization of various bedrock complexes (ultrabasites, gabbroids, dolerites, basalts, metamorphic rocks) is given. Geological conditions of newly found hydrothermal mineralization in the area are described. Problems of ore melts are under consideration. New data on hydrochemical anomalies and heat flow are given. The book contains original materials on sedimentary formations of the area.
Resumo:
The monograph gives the first systematic description of ore-bearing guyots from the West Pacific. It is mostly based on data obtained in numerous expeditions of Russian vessels during 1984-1992. Ore deposits located on upper parts of all slopes and tops of the guyots include phosphorites associated with cobalt- and platinum-rich ferromanganese crusts. Location, origin and prospecting of mineral deposits are discussed on the base of new data on metallogenic factors (geodynamics, tectonics, magmatism, sedimentation and morphostructures).
Resumo:
During Ocean Drilling Program Leg 126, six sites were cored in a young backarc rift basin and its flanks (rift onset 1.1-3.56 Ma) and in the forearc basin of the Izu-Bonin Arc. In the backarc area, strata are younger than about 4.5 Ma, whereas in the forearc, ages are about 0-31 Ma in sections punctuated by important Miocene unconformities. Bulk chemical analyses of volcaniclastic turbidite sands and sandstones, derived directly from the arc, were obtained from 271 atomic absorption analyses (major elements), 253 XRF analyses (trace elements) and 16 ICP-MS analyses (trace and rare-earth elements). Of the 271 samples, 78 come from the backarc area and the remainder from the forearc. The sands and sandstones reflect the igneous compositions of their sources. Most are formed of materials derived from subalkaline, low-K andesites, and dacites, although compositions range from basalt to rhyolite. Basic and acid andesites are predominant in Oligocene rocks; in contrast, Pliocene-Pleistocene sediments were derived from acid andesitic to rhyolitic sources. The oldest sandstones, estimated to have an age of about 31 Ma, were derived from an arc tholeiitic, not boninitic, source. The 26-31 Ma sandstones furthest to the north, at Sites 787 and 792, have higher relative concentrations of Ti, Zr, and Y than do those at southern Site 793. Data from younger samples indicate that, for more than 30 m.y., the average composition of volcaniclastic sediments and volcanism near Aoga Shima was more basic than to the south, near Sumisu Jima. Using the sandstones as igneous proxies, we conclude that magmas erupted along the arc have become more depleted in light-rare-earth elements (LREE) with time. There was a major change in rare-earth-element (REE) concentrations in the late Oligocene, from essentially flat patterns (normalized La/Yb about 1-1.5) to LREE-depleted patterns (normalized La/Yb about 0.5). At the same time, Zr/Y ratios decreased from about 2-4 to about 1.5-2.5. These changes may reflect a shift in provenance, or changes in the composition of the mantle wedge beneath the arc. In the backarc area, lithic clasts and glass shards of rift-facies basalt are present in sediments as old as 2.35-3.15 Ma. Two samples of mafic sand from the backarc basin have flat REE patterns (normalized La/Yb about 1.0), like some of the <1-Ma rift lavas and unlike pre-rift sand and sandstone samples. These possibly represent the local effects of sedimentary mixing of detritus from arc and backarc eruptions because no evidence from the arc itself exists to suggest a recent change in the REE content of magmas.
Resumo:
Seventeen eastern Mediterranean Pliocene sapropels from ODP Sites 964, 966, 967 and 969, some of which are coeval, have been analysed for their geochemistry. The sapropels are characterized by very high organic carbon contents (up to 30%) which are reported to be the result of both increased productivity and improved preservation. Although the organic matter in the sapropels is mainly of marine origin, the d13Corg values and C/N ratios appear "terrestrial". This is the result of anaerobic organic matter degradation which preferentially removed nitrogen- and 13C-rich organic components. A comparison with Ti/Al profiles, which mimic the precession index, and a calculation of organic carbon accumulation rates indicate that sedimentation rates were at most 30% lower or at most 50% higher during sapropel formation. Thus, sapropel formation lasted from between 2000 and 10,000 years at Site 964 to between 4500 and 12,000 years at Site 967. A synthesis of new data and a comparison with existing models indicates that productivity, which increased due to extra nutrients supplied as a result of winter mixing and as a result of enhanced input by the Nile, was the driving mechanism behind sapropel formation. The resulting sapropel formation was simultaneous at different depths, but lasted longer in the part of the basin closest to the Nile.
Resumo:
Petrography and isotope geochemical characteristics of H, O, S, Sr, and Nd have been described for basalts recovered from Hole 504B during Leg 111 of the Ocean Drilling Program. The petrographic and chemical features of the recovered basalts are similar to those obtained previously (DSDP Legs 69, 70, and 83); they can be divided into phyric (plagioclase-rich) and aphyric (Plagioclase- and clinopyroxene-rich) basalts and show low abundances of TiO2, Na2O, K2O, and Sr. This indicates that the basalts belong to Group D, comprising the majority of the upper section of the Hole 504B. The diopside-rich nature of the clinopyroxene phenocrysts and Ca-rich nature of the Plagioclase phenocrysts are also consistent with the preceding statement. The Sr and Nd isotope systematics (average 87Sr/86Sr = 0.70267 ± 0.00007 and average 143Nd/144Nd = 0.513157 ± 0.000041) indicate that the magma sources are isotopically heterogeneous, although the analyzed samples represent only the lowermost 200-m section of Hole 504B. The rocks were subjected to moderate hydrothermal alteration throughout the section recovered during Leg 111. Alteration is limited to interstices, microfractures, and grain boundaries of the primary minerals, forming chlorite, actinolite, talc, smectite, quartz, sphene, and pyrite. In harmony with the moderate alteration, the following alteration-sensitive parameters show rather limited ranges of variation: H2O = 1.1 ±0.2 wt%, dD = - 38 per mil ± 4 per mil, d180 = 5.4 per mil ± 0.3 per mil, total S = 562 ± 181 ppm, and d34S = 0.8 per mil ± 0.3 per mil. Based on these data, it was estimated that the hydrothermal fluids had dD and d180 values only slightly higher than those of seawater, the water/rock ratios were as low as 0.02-0.2, and the temperature of alteration was 300°-400°C. Sulfur exists predominantly as pyrite and in minor quantities as chalcopyrite. No primary monosulfide was detected. This and the d34S values of pyrite (d34S = 0.8 per mil) suggest that primary pyrrhotite was almost completely oxidized to pyrite by reaction with hydrothermal fluids containing very little sulfate.
Resumo:
Arctic shelf zooplankton communities are dominated by the copepod Calanus glacialis. This species feeds in surface waters during spring and summer and accumulates large amounts of lipids. Autumn and winter are spent in dormancy in deeper waters. Lipids are believed to play a major role in regulating buoyancy, however, they cannot explain fine-tuning of the depth distribution. To investigate whether ion exchange processes and acid-base regulation support ontogenetic migration as suggested for Antarctic copepods, we sampled C. glacialis in monthly intervals for 1 yr in a high-Arctic fjord and determined cation concentrations and the extracellular pH (pHe) in its hemolymph. During the winter/spring transition, prior to the upward migration of the copepods, Li+ ions were exchanged with cations (Na+, Mg2+, and Ca2+) leading to Li+ concentrations of 197 mmol/L. This likely decreased the density and promoted upward migration in C. glacialis. Our data thus suggest that Li+ has a biological function in this species. Ion and pHe regulation in the hemolymph were not directly correlated, but the pHe revealed a seasonal pattern and was low (5.5) in winter and high (7.9) in summer. Low pHe during overwintering might be related to metabolic depression and thus, support diapause.
Resumo:
Surface sediments from the South American continental margin surrounding tbe Argentine Basin were studied with respect to bulk geochemistry (Caeo) and C ) and grain-size composition (sand/silt/clay relation and terrigenous silt grain-size distribution). The grain-size distributions of the terrigenous silt fraction were unmixed into three end members (EMs), using an end-member modelling algorithm. Three unimodal EMs appear to satisfactorily explain the variations in the data set of the grain-size distributions ofterrigenous silt. The EMs are related to sediment supply by rivers, downslope transport, winnowing, dispersal and re-deposition by currents. The bulk geochemical composition was used to trace the distribution of prominent water masses within the vertical profile. The sediments of the eastern South American continental margin are generally divided into a coarse-grained and carbonate-depleted southwestern part, and a finer-grained and carbonate-rich northeastern part. The transition of both environments is located at the position of the Brazil Malvinas Confluence (BMC). The sediments below the confluence mixing zone of the Malvinas and Brazil Currents and its extensions are characterised by high concentrations of organic carbon, low carbonate contents and high proportions of the intennediate grain-size end member. Tracing these properties, the BMC emerges as a distinct north-south striking feature centered at 52-54°W crossing the continental margin diagonally. Adjacent to this prominent feature in the southwest, the direct detrital sediment discharge of the Rio de la Plata is clearly recognised by a downslope tongue of sand and high proportions of the coarsest EM. A similar coarse grain-size composition extends further south along the continental slope. However, it displays bener sorting due to intense winnowing by the vigorous Malvinas Current. Fine-grained sedimentary deposition zones are located at the southwestern deeper part of the Rio Grande Rise and the southern abyssal Brazil Basin, both within the AABW domain. Less conspicuous winnowing/accumulation panerns are indicated north of the La Plata within the NADW level according to the continental margin topography. We demonstrate that combined bulk geochemical and grain-size properties of surface sediments, unmixed with an end-member algorithm, provide a powerful tool to reconstruct the complex interplay of sedimentology and oceanography along a time slice.
Resumo:
The ocean off NW Africa is the second most important coastal upwelling system with a total annual primary production of 0.33 Gt of carbon per year (Carr in Deep Sea Res II 49:59-80, 2002). Deep ocean organic carbon fluxes measured by sediment traps are also fairly high despite low biogenic opal fluxes. Due to a low supply of dissolved silicate from subsurface waters, the ocean off NW Africa is characterized by predominantly carbonate-secreting primary producers, i.e. coccolithophorids. These algae which are key primary producers since millions of years are found in organic- and chlorophyll-rich zooplankton fecal pellets, which sink rapidly through the water column within a few days. Particle flux studies in the Mauretanian upwelling area (Cape Blanc) confirm the hypothesis of Armstrong et al. (Deep Sea Res II 49:219-236, 2002) who proposed that ballast availability, e.g. of carbonate particles, is essential to predict deep ocean organic carbon fluxes. The role of dust as ballast mineral for organic carbon, however, must be also taken into consideration in the coastal settings off NW Africa. There, high settling rates of larger particles approach 400 m day**-1, which may be due to a particular composition of mineral ballast. An assessment of particle settling rates from opal-production systems in the Southern Ocean of the Atlantic Sector, in contrast, provides lower values, consistent with the assumptions of Francois et al. (Global Biogeochem Cycles 16(4):1087, 2002). Satellite chlorophyll distributions, particle distributions and fluxes in the water column off NW Africa as well as modelling studies suggest a significant lateral flux component and export of particles from coastal shelf waters into the open ocean. These transport processes have implications for paleo-reconstructions from sediment cores retrieved at continental margin settings.