62 resultados para Soft texture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the nodule field of the Peru Basin, situated south of the zone of high bioproductivity, a relatively high flux of biogenic matter explains a distinct redox boundary at about 10 cm depth separating very soft oxic surface sediments from stiffer suboxic sediments. Maximum abundance (50 kg/m**2) of diagenetic nodules is found near the calcite compensation depth (CCD), currently at 4250 m. There, the accretion rate of nodules is much higher (100 mm/Ma) than on ridges (5 mm/Ma). Highest accretion rates are found at the bottom of large nodules that repeatedly sink to a level immediately above the redox boundary. There, distinct diagenetic growth conditions prevail and layers of dense laminated Mn oxide of very pure todorokite are formed. The layering of nodules is mainly the result of organisms moving nodules within the oxic surface sediment from diagenetic to hydrogenetic environments. The frequency of such movements is much higher than that of climatic changes. Two types of nodule burial occur in the Peru Basin. Large nodules are less easily moved by organisms and become buried. Consequently, buried nodules generally are larger than surface nodules. This type of burial predominates in basins. At ridges where smaller nodules prevail, burial is mainly controlled by statistical selection where some nodules are not moved up by organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The shapes and surface textures of sand-sized quartz grains from the sediments cored at Site 645 in southern Baffin Bay during ODP Leg 105 were studied to characterize the terrigenous materials and the settling processes involved in the deposition of these sediments. Here, we show a homogeneous sand fraction that results from mixing grains from various provenances. The characteristics inherited from terrestrial processes (varying degrees of wear; fluviatile, aeolian, and diagenetic features) dominate the characteristics that result from evolution in a high-energy marine environment. Thus, the influence of the last stage of sedimentation in a deep-marine environment was difficult to distinguish. However, fluctuations in the relative proportions of particular features reveal that the terrigenous material derived from sedimentary formations of Baffin Island and East Greenland or from direct abrasion of the crystalline shield, which changed through time as the dominant settling processes evolved. In particular, this study confirms the onset of major ice rafting as old as late Miocene.