589 resultados para Sodium dodecyl sulfate


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Authigenic carbonates in the caldera of an Arctic (72°N) submarine mud volcano with active methane-bearing fluid discharge are formed at the bottom surface during anaerobic microbial methane oxidation. The microbial community consists of specific methane-producing bacteria, which act as methanotrophic ones in conditions of excess methane, and sulfate reducers developing on hydrogen, which is an intermediate product of microbial CH4 oxidation. Isotopically light carbon (aver. d13C = -28.9 per mil) of CO2 produced during CH4 oxidation is the main carbonate carbon source. Heavy oxygen isotope ratio (aver. d18O = 5 per mil) in carbonates is inherited from seawater sulfate. Rapid sulfate reduction (up to 12 mg S/dm**3/day) results in total exhausting of sulfate ion in the upper sediment layer (10 cm). Because of this carbonates can only be formed in surface sediments near the water-bottom interface. Salinity as well as CO3/Ca and Mg/Ca ratios correspond to the field of non-magnesian calcium carbonate precipitation. Calcite is the dominant carbonate mineral in the methane seep caldera, where it occurs in the paragenetic association with barite. Radiocarbon age of carbonates is about 10 Ka.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This report summarizes chemical and isotopic data from Ocean Drilling Program Leg 195 Site 1201. Pore water is divided into three intervals based on the rate of chemical change with depth. The shallowest interval is the red clay unit between 1.26 and 56.40 meters below seafloor (mbsf). In this section, there are overall decreases in the concentrations of alkalinity, boron, lithium, magnesium, potassium, sodium, and sulfate, whereas concentrations of calcium and chloride increase. Values of d18O and dD plot near standard mean ocean water to the right of the global meteoric water line (GMWL). Five samples from 72.60 and 83.33 mbsf yielded pore water for analyses. These samples help define a trend in the second interval, which is between 56.4 and 238.98 mbsf. Here, concentrations of magnesium, potassium, sodium, and sulfate decease, whereas concentrations of boron, calcium, and chloride increase. Concentrations of alkalinity and lithium remain roughly constant. The deepest interval, between 238.04 and 504.8 mbsf, has comparatively slower decreases of sodium and sulfate, increases of calcium and chloride, slow increases of alkalinity and lithium, and roughly constant concentrations of magnesium, potassium, and boron. Values of d18O and dD in pore water between 146.98 and 504.80 mbsf plot in a linear trend to the right of the GMWL.