250 resultados para Slow sand filters


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of hotter than ambient plume mantle in the formation of a rifted volcanic margin in the northern Arabian Sea is investigated using subsidence analysis of a drill site located on the seismically defined Somnath volcanic ridge. The ridge has experienced >4 km of subsidence since 65 Ma and lies within oceanic lithosphere. We estimate crustal thickness to be 9.5-11.5 km. Curiously <400 m of the thermal subsidence occurred prior to 37 Ma, when subsidence rates would normally be at a maximum. We reject the hypothesis that this was caused by increasing plume dynamic support after continental break-up because the size of the thermal anomalies required are unrealistic (>600°C), especially considering the rapid northward drift of India relative to the Deccan-Réunion hotspot. We suggest that this reflects very slow lithospheric growth, possibly caused by vigorous asthenospheric convection lasting >28 m.y., and induced by the steep continent-ocean boundary. Post-rift slow subsidence is also recognized on volcanic margins in the NE Atlantic and SE Newfoundland and cannot be used as a unique indicator of plume mantle involvement in continental break-up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sixteen piston cores and twelve gravity cores were successfully recovered from northern and southern crests of the eastern Alpha Ridge andfrom the Alpha Ridge graben. All but one core contain late Cenozoic muds with variable amounts of sand- to pebble-sized clastic material that probably reflects transport by ice during the past 4-5 Ma. Sixteen Cenozoic-Holocene lithostratigraphic units have been delimited on the basis of sediment texture, structure, colour, detrital carbonate and authigenicferromanganese content. The composition of the upper 13 units in the CESAR cores is similar to the Fletcher's Ice Island cores; hence most units can be broadly correlated over most of the Central Arctic Ocean. Three new lithostratigraphic units (A1-A3) occur at the base of CESAR cores from the northern Alpha Ridge crest. Paleomagnetic and palynological data indicate a Late Miocene-Early Pliocene age for unit A3, which confirms previous reports of a slow sedimentation rate during the Cenozoic. CESAR core 6 was obtained from an erosional surface on top of a fault block at the north edge of the Alpha Ridge graben. This core contains ca. 2m of laminated diatom ooze of Campanian-Maastrichtian age and two ?Paleogene volcanic ash units below a brown mud unit which probably corresponds to units A2 and A3. The biosiliceous ooze contains no foraminifera or silicoflagellates and only few dinoflagellates. There is little difference in biogenic or clastic sediment content between light and dark laminae and the rhythmites do not appear to be annual varves produced in an upwelling environment. The microstructure and fluctuating mineral composition of the laminae most closely resemble those of lami- nated chert beds in the Triassic forearc basins of Japan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequences of late Pliocene to Holocene sediment lap onto juvenile igneous crust within 20 km of the Juan de Fuca Ridge in northwestern Cascadia Basin, Pacific Ocean. The detrital modes of turbidite sands do not vary significantly within or among sites drilled during Leg 168 of the Ocean Drilling Program. Average values of total quartz, total feldspar, and unstable lithic fragments are Q = 35, F = 35, and L = 30. Average values of monocrystalline quartz, plagioclase, and K-feldspar are Qm = 46, P = 49, and K = 5, and the average detrital modes of polycrystalline quartz, volcanic-rock fragments, and sedimentary-rock plus metamorphic-rock fragments are Qp = 16, Lv = 43, and Lsm = 41. Likely source areas include the Olympic Peninsula and Vancouver Island; sediment transport was focused primarily through the Strait of Juan de Fuca, Juan de Fuca Channel, Vancouver Valley, and Nitinat Valley. Relative abundance of clay minerals (<2-µm-size fraction) fluctuate erratically with depth, stratigraphic age, and sediment type (mud vs. turbidite matrix). Mineral abundance in mud samples are 0%-35% smectite (mean = 8%), 18%-59% illite (mean = 40%), and 29%-78% chlorite + kaolinite (mean = 52%). We attribute the relatively low content of smectite to rapid mechanical weathering of polymictic source terrains, with little or no input of volcanic detritus from the Columbia River. The scatter in clay mineralogy probably was caused by converging of surface currents, turbidity currents, and near-bottom nepheloid clouds from several directions, as well as subtle changes in glacial vs. interglacial weathering products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slow-sinking particles were sampled using the Marine Snow Catcher (MSC). For a full description of the MSC and flux calculations see Riley et al. (2012). The MSC was deployed at four depths between 50 - 650 m during four visit at Stations 1 (63°3' N 11°0' W) and three visits at Station 2 (62°5' N 2°3' W) to obtain depth profiles of slow-sinking material. The MSC was further deployed at 50 m during two visits at Station 3 (60°2' N 1°0' E). A total of 33 MSC were deployed. Slow-sinking particles were analysed for particulate organic carbon (POC), particulate inorganic carbon (PIC), biogenic silica (BSi), and Chlorophyll a (total, >10 µm).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relict sand wedges are ubiquitous in southern Patagonia. At six sites we conducted detailed investigations of stratigraphy, soils, and wedge frequency and characteristics. Some sections contain four or more buried horizons with casts. The cryogenic features are dominantly relict sand wedges with an average depth, maximum apparent width, minimum apparent width, and H/W of 78, 39, 3.8, and 2.9 cm, respectively. The host materials are fine-textured (silt loam, silty clay loam, clay loam) till and the infillings are aeolian sand. The soils are primarily Calciargidic Argixerolls that bear a legacy of climate change. Whereas the sand wedges formed during very cold (-4 to -8 °C or colder) and dry (ca. <=100 mm precipitation/yr) glacial periods, petrocalcic horizons from calcium carbonate contributed by dustfall formed during warmer (7 °C or warmer) and moister (>= 250 mm/yr) interglacial periods. The paleo-argillic (Bt) horizons reflect unusually moist interglacial events where the mean annual precipitation may have been 400 mm/yr. Permafrost was nearly continuous in southern Patagonia during the Illinoian glacial stage (ca. 200 ka), the early to mid-Pleistocene (ca. 800-500 ka), and on two occasions during the early Pleistocene (ca. 1.0-1.1 Ma).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the drilling of Hole 603B on Deep Sea Drilling Project Leg 93, an unexpected series of sand-, silt-, and claystone turbidites was encountered from Cores 603B-45 through -76 (1224-1512 m sub-bottom depth). Complete and truncated Bouma sequences were observed, some indicating deposition by debris flows. Sand emplacement culminated with the deposition of a 30-m-thick, unconsolidated sand unit (Cores 603B-48 through -45). The purpose of this preliminary study is to determine the nature of the heavy mineral suites of this sediment in order to make tentative correlations with onshore equivalents. The heavy mineralogy of Lower Cretaceous North American mid-Atlantic coastal plain sediment has been extensively studied. This sediment is classified as the Potomac Group, which has a varied heavy mineral suite in its lower part (Patuxent Formation), and a limited suite in its upper part (Patapsco Formation). The results of this study reveal a similar trend in the heavy mineral suites of sediment in Hole 603B. Hauterivian through lower Barremian sediment has a heavy mineral suite that is dominated by zircon, apatite, and garnet, with minor amounts of staurolite and kyanite. Beginning in the mid-Barremian, a new source of sediment becomes dominant, one which supplies an epidote-rich heavy mineral suite. The results of the textural analyses show that average grain size of the light mineral fraction increases upsection, whereas sorting decreases. The epidote-rich source may have delivered sediment with a slightly coarser mean grain size. This sediment may represent a more direct continental input at times of maximum turbidite activity (mid-Barremian) and during deposition of the upper, unconsolidated sand unit.

Relevância:

20.00% 20.00%

Publicador: